C THIS VERSION: 18/05/2004 AT 08:15:00 GMT. C Updated 18/05/2004: depricated SNRM2 replaced by equivalent "streamlined" DNRM2 REAL FUNCTION SDOT(N,SX,INCX,SY,INCY) C C FORMS THE DOT PRODUCT OF TWO VECTORS. C USES UNROLLED LOOPS FOR INCREMENTS EQUAL TO ONE. C JACK DONGARRA, LINPACK, 3/11/78. C REAL SX(*),SY(*),STEMP INTEGER I,INCX,INCY,IX,IY,M,MP1,N C STEMP = 0.0E0 SDOT = 0.0E0 IF(N.LE.0)RETURN IF(INCX.EQ.1.AND.INCY.EQ.1)GO TO 20 C C CODE FOR UNEQUAL INCREMENTS OR EQUAL INCREMENTS C NOT EQUAL TO 1 C IX = 1 IY = 1 IF(INCX.LT.0)IX = (-N+1)*INCX + 1 IF(INCY.LT.0)IY = (-N+1)*INCY + 1 DO 10 I = 1,N STEMP = STEMP + SX(IX)*SY(IY) IX = IX + INCX IY = IY + INCY 10 CONTINUE SDOT = STEMP RETURN C C CODE FOR BOTH INCREMENTS EQUAL TO 1 C C C CLEAN-UP LOOP C 20 M = MOD(N,5) IF( M .EQ. 0 ) GO TO 40 DO 30 I = 1,M STEMP = STEMP + SX(I)*SY(I) 30 CONTINUE IF( N .LT. 5 ) GO TO 60 40 MP1 = M + 1 DO 50 I = MP1,N,5 STEMP = STEMP + SX(I)*SY(I) + SX(I + 1)*SY(I + 1) + * SX(I + 2)*SY(I + 2) + SX(I + 3)*SY(I + 3) + SX(I + 4)*SY(I + 4) 50 CONTINUE 60 SDOT = STEMP RETURN END double precision function ddot(n,dx,incx,dy,incy) c c forms the dot product of two vectors. c uses unrolled loops for increments equal to one. c jack dongarra, linpack, 3/11/78. c modified 12/3/93, array(1) declarations changed to array(*) c double precision dx(*),dy(*),dtemp integer i,incx,incy,ix,iy,m,mp1,n c ddot = 0.0d0 dtemp = 0.0d0 if(n.le.0)return if(incx.eq.1.and.incy.eq.1)go to 20 c c code for unequal increments or equal increments c not equal to 1 c ix = 1 iy = 1 if(incx.lt.0)ix = (-n+1)*incx + 1 if(incy.lt.0)iy = (-n+1)*incy + 1 do 10 i = 1,n dtemp = dtemp + dx(ix)*dy(iy) ix = ix + incx iy = iy + incy 10 continue ddot = dtemp return c c code for both increments equal to 1 c c c clean-up loop c 20 m = mod(n,5) if( m .eq. 0 ) go to 40 do 30 i = 1,m dtemp = dtemp + dx(i)*dy(i) 30 continue if( n .lt. 5 ) go to 60 40 mp1 = m + 1 do 50 i = mp1,n,5 dtemp = dtemp + dx(i)*dy(i) + dx(i + 1)*dy(i + 1) + * dx(i + 2)*dy(i + 2) + dx(i + 3)*dy(i + 3) + dx(i + 4)*dy(i + 4) 50 continue 60 ddot = dtemp return end SUBROUTINE SCOPY(N,SX,INCX,SY,INCY) C C COPIES A VECTOR, X, TO A VECTOR, Y. C USES UNROLLED LOOPS FOR INCREMENTS EQUAL TO 1. C JACK DONGARRA, LINPACK, 3/11/78. C REAL SX(*),SY(*) INTEGER I,INCX,INCY,IX,IY,M,MP1,N C IF(N.LE.0)RETURN IF(INCX.EQ.1.AND.INCY.EQ.1)GO TO 20 C C CODE FOR UNEQUAL INCREMENTS OR EQUAL INCREMENTS C NOT EQUAL TO 1 C IX = 1 IY = 1 IF(INCX.LT.0)IX = (-N+1)*INCX + 1 IF(INCY.LT.0)IY = (-N+1)*INCY + 1 DO 10 I = 1,N SY(IY) = SX(IX) IX = IX + INCX IY = IY + INCY 10 CONTINUE RETURN C C CODE FOR BOTH INCREMENTS EQUAL TO 1 C C C CLEAN-UP LOOP C 20 M = MOD(N,7) IF( M .EQ. 0 ) GO TO 40 DO 30 I = 1,M SY(I) = SX(I) 30 CONTINUE IF( N .LT. 7 ) RETURN 40 MP1 = M + 1 DO 50 I = MP1,N,7 SY(I) = SX(I) SY(I + 1) = SX(I + 1) SY(I + 2) = SX(I + 2) SY(I + 3) = SX(I + 3) SY(I + 4) = SX(I + 4) SY(I + 5) = SX(I + 5) SY(I + 6) = SX(I + 6) 50 CONTINUE RETURN END subroutine dcopy(n,dx,incx,dy,incy) c c copies a vector, x, to a vector, y. c uses unrolled loops for increments equal to one. c jack dongarra, linpack, 3/11/78. c modified 12/3/93, array(1) declarations changed to array(*) c double precision dx(*),dy(*) integer i,incx,incy,ix,iy,m,mp1,n c if(n.le.0)return if(incx.eq.1.and.incy.eq.1)go to 20 c c code for unequal increments or equal increments c not equal to 1 c ix = 1 iy = 1 if(incx.lt.0)ix = (-n+1)*incx + 1 if(incy.lt.0)iy = (-n+1)*incy + 1 do 10 i = 1,n dy(iy) = dx(ix) ix = ix + incx iy = iy + incy 10 continue return c c code for both increments equal to 1 c c c clean-up loop c 20 m = mod(n,7) if( m .eq. 0 ) go to 40 do 30 i = 1,m dy(i) = dx(i) 30 continue if( n .lt. 7 ) return 40 mp1 = m + 1 do 50 i = mp1,n,7 dy(i) = dx(i) dy(i + 1) = dx(i + 1) dy(i + 2) = dx(i + 2) dy(i + 3) = dx(i + 3) dy(i + 4) = dx(i + 4) dy(i + 5) = dx(i + 5) dy(i + 6) = dx(i + 6) 50 continue return end SUBROUTINE SSCAL(N,SA,SX,INCX) C C SCALES A VECTOR BY A CONSTANT. C USES UNROLLED LOOPS FOR INCREMENT EQUAL TO 1. C JACK DONGARRA, LINPACK, 3/11/78. C REAL SA,SX(*) INTEGER I,INCX,M,MP1,N,NINCX C IF(N.LE.0)RETURN IF(INCX.EQ.1)GO TO 20 C C CODE FOR INCREMENT NOT EQUAL TO 1 C NINCX = N*INCX DO 10 I = 1,NINCX,INCX SX(I) = SA*SX(I) 10 CONTINUE RETURN C C CODE FOR INCREMENT EQUAL TO 1 C C C CLEAN-UP LOOP C 20 M = MOD(N,5) IF( M .EQ. 0 ) GO TO 40 DO 30 I = 1,M SX(I) = SA*SX(I) 30 CONTINUE IF( N .LT. 5 ) RETURN 40 MP1 = M + 1 DO 50 I = MP1,N,5 SX(I) = SA*SX(I) SX(I + 1) = SA*SX(I + 1) SX(I + 2) = SA*SX(I + 2) SX(I + 3) = SA*SX(I + 3) SX(I + 4) = SA*SX(I + 4) 50 CONTINUE RETURN END subroutine dscal(n,da,dx,incx) c c scales a vector by a constant. c uses unrolled loops for increment equal to one. c jack dongarra, linpack, 3/11/78. c modified 3/93 to return if incx .le. 0. c modified 12/3/93, array(1) declarations changed to array(*) c double precision da,dx(*) integer i,incx,m,mp1,n,nincx c if( n.le.0 .or. incx.le.0 )return if(incx.eq.1)go to 20 c c code for increment not equal to 1 c nincx = n*incx do 10 i = 1,nincx,incx dx(i) = da*dx(i) 10 continue return c c code for increment equal to 1 c c c clean-up loop c 20 m = mod(n,5) if( m .eq. 0 ) go to 40 do 30 i = 1,m dx(i) = da*dx(i) 30 continue if( n .lt. 5 ) return 40 mp1 = m + 1 do 50 i = mp1,n,5 dx(i) = da*dx(i) dx(i + 1) = da*dx(i + 1) dx(i + 2) = da*dx(i + 2) dx(i + 3) = da*dx(i + 3) dx(i + 4) = da*dx(i + 4) 50 continue return end SUBROUTINE SAXPY(N,SA,SX,INCX,SY,INCY) C C CONSTANT TIMES A VECTOR PLUS A VECTOR. C USES UNROLLED LOOP FOR INCREMENTS EQUAL TO ONE. C JACK DONGARRA, LINPACK, 3/11/78. C REAL SX(*),SY(*),SA INTEGER I,INCX,INCY,IX,IY,M,MP1,N C IF(N.LE.0)RETURN IF (SA .EQ. 0.0) RETURN IF(INCX.EQ.1.AND.INCY.EQ.1)GO TO 20 C C CODE FOR UNEQUAL INCREMENTS OR EQUAL INCREMENTS C NOT EQUAL TO 1 C IX = 1 IY = 1 IF(INCX.LT.0)IX = (-N+1)*INCX + 1 IF(INCY.LT.0)IY = (-N+1)*INCY + 1 DO 10 I = 1,N SY(IY) = SY(IY) + SA*SX(IX) IX = IX + INCX IY = IY + INCY 10 CONTINUE RETURN C C CODE FOR BOTH INCREMENTS EQUAL TO 1 C C C CLEAN-UP LOOP C 20 M = MOD(N,4) IF( M .EQ. 0 ) GO TO 40 DO 30 I = 1,M SY(I) = SY(I) + SA*SX(I) 30 CONTINUE IF( N .LT. 4 ) RETURN 40 MP1 = M + 1 DO 50 I = MP1,N,4 SY(I) = SY(I) + SA*SX(I) SY(I + 1) = SY(I + 1) + SA*SX(I + 1) SY(I + 2) = SY(I + 2) + SA*SX(I + 2) SY(I + 3) = SY(I + 3) + SA*SX(I + 3) 50 CONTINUE RETURN END subroutine daxpy(n,da,dx,incx,dy,incy) c c constant times a vector plus a vector. c uses unrolled loops for increments equal to one. c jack dongarra, linpack, 3/11/78. c modified 12/3/93, array(1) declarations changed to array(*) c double precision dx(*),dy(*),da integer i,incx,incy,ix,iy,m,mp1,n c if(n.le.0)return if (da .eq. 0.0d0) return if(incx.eq.1.and.incy.eq.1)go to 20 c c code for unequal increments or equal increments c not equal to 1 c ix = 1 iy = 1 if(incx.lt.0)ix = (-n+1)*incx + 1 if(incy.lt.0)iy = (-n+1)*incy + 1 do 10 i = 1,n dy(iy) = dy(iy) + da*dx(ix) ix = ix + incx iy = iy + incy 10 continue return c c code for both increments equal to 1 c c c clean-up loop c 20 m = mod(n,4) if( m .eq. 0 ) go to 40 do 30 i = 1,m dy(i) = dy(i) + da*dx(i) 30 continue if( n .lt. 4 ) return 40 mp1 = m + 1 do 50 i = mp1,n,4 dy(i) = dy(i) + da*dx(i) dy(i + 1) = dy(i + 1) + da*dx(i + 1) dy(i + 2) = dy(i + 2) + da*dx(i + 2) dy(i + 3) = dy(i + 3) + da*dx(i + 3) 50 continue return end REAL FUNCTION SNRM2 ( N, X, INCX ) * .. Scalar Arguments .. INTEGER INCX, N * .. Array Arguments .. REAL X( INCX * ( N - 1 ) + 1 ) * .. * * SNRM2 returns the euclidean norm of a vector via the function * name, so that * * SNRM2 := sqrt( x'*x ) * * * * -- This version written on 25-October-1982. * Sven Hammarling, Nag Ltd. * * * .. Parameters .. REAL ONE , ZERO PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) * .. Local Scalars .. INTEGER IX REAL ABSXI, NORM, SCALE, SSQ * .. Intrinsic Functions .. INTRINSIC ABS, SQRT * .. * .. Executable Statements .. IF( N.LT.1 .OR. INCX.LT.1 )THEN NORM = ZERO ELSE IF( N.EQ.1 )THEN NORM = ABS( X( 1 ) ) ELSE SCALE = ZERO SSQ = ONE DO 10, IX = 1, 1 + ( N - 1 )*INCX, INCX IF( X( IX ).NE.ZERO )THEN ABSXI = ABS( X( IX ) ) IF( SCALE.LT.ABSXI )THEN SSQ = ONE + SSQ*( SCALE/ABSXI )**2 SCALE = ABSXI ELSE SSQ = SSQ + ( ABSXI/SCALE )**2 END IF END IF 10 CONTINUE NORM = SCALE * SQRT( SSQ ) END IF * SNRM2 = NORM RETURN * * End of SNRM2. * END DOUBLE PRECISION FUNCTION DNRM2 ( N, X, INCX ) * .. Scalar Arguments .. INTEGER INCX, N * .. Array Arguments .. DOUBLE PRECISION X( INCX * ( N - 1 ) + 1 ) * .. * * DNRM2 returns the euclidean norm of a vector via the function * name, so that * * DNRM2 := sqrt( x'*x ) * * * * -- This version written on 25-October-1982. * Modified on 14-October-1993 to inline the call to DLASSQ. * Sven Hammarling, Nag Ltd. * * * .. Parameters .. DOUBLE PRECISION ONE , ZERO PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) * .. Local Scalars .. INTEGER IX DOUBLE PRECISION ABSXI, NORM, SCALE, SSQ * .. Intrinsic Functions .. INTRINSIC ABS, SQRT * .. * .. Executable Statements .. IF( N.LT.1 .OR. INCX.LT.1 )THEN NORM = ZERO ELSE IF( N.EQ.1 )THEN NORM = ABS( X( 1 ) ) ELSE SCALE = ZERO SSQ = ONE * The following loop is equivalent to this call to the LAPACK * auxiliary routine: * CALL DLASSQ( N, X, INCX, SCALE, SSQ ) * DO 10, IX = 1, 1 + ( N - 1 )*INCX, INCX IF( X( IX ).NE.ZERO )THEN ABSXI = ABS( X( IX ) ) IF( SCALE.LT.ABSXI )THEN SSQ = ONE + SSQ*( SCALE/ABSXI )**2 SCALE = ABSXI ELSE SSQ = SSQ + ( ABSXI/SCALE )**2 END IF END IF 10 CONTINUE NORM = SCALE * SQRT( SSQ ) END IF * DNRM2 = NORM RETURN * * End of DNRM2. * END subroutine drot (n,dx,incx,dy,incy,c,s) c c applies a plane rotation. c jack dongarra, linpack, 3/11/78. c double precision dx(*),dy(*),dtemp,c,s integer i,incx,incy,ix,iy,n c if(n.le.0)return if(incx.eq.1.and.incy.eq.1)go to 20 c c code for unequal increments or equal increments not equal c to 1 c ix = 1 iy = 1 if(incx.lt.0)ix = (-n+1)*incx + 1 if(incy.lt.0)iy = (-n+1)*incy + 1 do 10 i = 1,n dtemp = c*dx(ix) + s*dy(iy) dy(iy) = c*dy(iy) - s*dx(ix) dx(ix) = dtemp ix = ix + incx iy = iy + incy 10 continue return c c code for both increments equal to 1 c 20 do 30 i = 1,n dtemp = c*dx(i) + s*dy(i) dy(i) = c*dy(i) - s*dx(i) dx(i) = dtemp 30 continue return end subroutine drotg(da,db,c,s) c c construct givens plane rotation. c jack dongarra, linpack, 3/11/78. c double precision da,db,c,s,roe,scale,r,z c roe = db if( dabs(da) .gt. dabs(db) ) roe = da scale = dabs(da) + dabs(db) if( scale .ne. 0.0d0 ) go to 10 c = 1.0d0 s = 0.0d0 r = 0.0d0 z = 0.0d0 go to 20 10 r = scale*dsqrt((da/scale)**2 + (db/scale)**2) r = dsign(1.0d0,roe)*r c = da/r s = db/r z = 1.0d0 if( dabs(da) .gt. dabs(db) ) z = s if( dabs(db) .ge. dabs(da) .and. c .ne. 0.0d0 ) z = 1.0d0/c 20 da = r db = z return end subroutine srot (n,sx,incx,sy,incy,c,s) c c applies a plane rotation. c jack dongarra, linpack, 3/11/78. c real sx(*),sy(*),stemp,c,s integer i,incx,incy,ix,iy,n c if(n.le.0)return if(incx.eq.1.and.incy.eq.1)go to 20 c c code for unequal increments or equal increments not equal c to 1 c ix = 1 iy = 1 if(incx.lt.0)ix = (-n+1)*incx + 1 if(incy.lt.0)iy = (-n+1)*incy + 1 do 10 i = 1,n stemp = c*sx(ix) + s*sy(iy) sy(iy) = c*sy(iy) - s*sx(ix) sx(ix) = stemp ix = ix + incx iy = iy + incy 10 continue return c c code for both increments equal to 1 c 20 do 30 i = 1,n stemp = c*sx(i) + s*sy(i) sy(i) = c*sy(i) - s*sx(i) sx(i) = stemp 30 continue return end subroutine srotg(sa,sb,c,s) c c construct givens plane rotation. c jack dongarra, linpack, 3/11/78. c real sa,sb,c,s,roe,scale,r,z c roe = sb if( abs(sa) .gt. abs(sb) ) roe = sa scale = abs(sa) + abs(sb) if( scale .ne. 0.0 ) go to 10 c = 1.0 s = 0.0 r = 0.0 z = 0.0 go to 20 10 r = scale*sqrt((sa/scale)**2 + (sb/scale)**2) r = sign(1.0,roe)*r c = sa/r s = sb/r z = 1.0 if( abs(sa) .gt. abs(sb) ) z = s if( abs(sb) .ge. abs(sa) .and. c .ne. 0.0 ) z = 1.0/c 20 sa = r sb = z return end SUBROUTINE DGEMM ( TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, $ BETA, C, LDC ) * .. Scalar Arguments .. CHARACTER*1 TRANSA, TRANSB INTEGER M, N, K, LDA, LDB, LDC DOUBLE PRECISION ALPHA, BETA * .. Array Arguments .. DOUBLE PRECISION A( LDA, * ), B( LDB, * ), C( LDC, * ) * .. * * Purpose * ======= * * DGEMM performs one of the matrix-matrix operations * * C := alpha*op( A )*op( B ) + beta*C, * * where op( X ) is one of * * op( X ) = X or op( X ) = X', * * alpha and beta are scalars, and A, B and C are matrices, with op( A ) * an m by k matrix, op( B ) a k by n matrix and C an m by n matrix. * * Parameters * ========== * * TRANSA - CHARACTER*1. * On entry, TRANSA specifies the form of op( A ) to be used in * the matrix multiplication as follows: * * TRANSA = 'N' or 'n', op( A ) = A. * * TRANSA = 'T' or 't', op( A ) = A'. * * TRANSA = 'C' or 'c', op( A ) = A'. * * Unchanged on exit. * * TRANSB - CHARACTER*1. * On entry, TRANSB specifies the form of op( B ) to be used in * the matrix multiplication as follows: * * TRANSB = 'N' or 'n', op( B ) = B. * * TRANSB = 'T' or 't', op( B ) = B'. * * TRANSB = 'C' or 'c', op( B ) = B'. * * Unchanged on exit. * * M - INTEGER. * On entry, M specifies the number of rows of the matrix * op( A ) and of the matrix C. M must be at least zero. * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the number of columns of the matrix * op( B ) and the number of columns of the matrix C. N must be * at least zero. * Unchanged on exit. * * K - INTEGER. * On entry, K specifies the number of columns of the matrix * op( A ) and the number of rows of the matrix op( B ). K must * be at least zero. * Unchanged on exit. * * ALPHA - DOUBLE PRECISION. * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * A - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is * k when TRANSA = 'N' or 'n', and is m otherwise. * Before entry with TRANSA = 'N' or 'n', the leading m by k * part of the array A must contain the matrix A, otherwise * the leading k by m part of the array A must contain the * matrix A. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. When TRANSA = 'N' or 'n' then * LDA must be at least max( 1, m ), otherwise LDA must be at * least max( 1, k ). * Unchanged on exit. * * B - DOUBLE PRECISION array of DIMENSION ( LDB, kb ), where kb is * n when TRANSB = 'N' or 'n', and is k otherwise. * Before entry with TRANSB = 'N' or 'n', the leading k by n * part of the array B must contain the matrix B, otherwise * the leading n by k part of the array B must contain the * matrix B. * Unchanged on exit. * * LDB - INTEGER. * On entry, LDB specifies the first dimension of B as declared * in the calling (sub) program. When TRANSB = 'N' or 'n' then * LDB must be at least max( 1, k ), otherwise LDB must be at * least max( 1, n ). * Unchanged on exit. * * BETA - DOUBLE PRECISION. * On entry, BETA specifies the scalar beta. When BETA is * supplied as zero then C need not be set on input. * Unchanged on exit. * * C - DOUBLE PRECISION array of DIMENSION ( LDC, n ). * Before entry, the leading m by n part of the array C must * contain the matrix C, except when beta is zero, in which * case C need not be set on entry. * On exit, the array C is overwritten by the m by n matrix * ( alpha*op( A )*op( B ) + beta*C ). * * LDC - INTEGER. * On entry, LDC specifies the first dimension of C as declared * in the calling (sub) program. LDC must be at least * max( 1, m ). * Unchanged on exit. * * * Level 3 Blas routine. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. External Subroutines .. EXTERNAL XERBLA * .. Intrinsic Functions .. INTRINSIC MAX * .. Local Scalars .. LOGICAL NOTA, NOTB INTEGER I, INFO, J, L, NROWA, NROWB DOUBLE PRECISION TEMP * .. Parameters .. DOUBLE PRECISION ONE , ZERO PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) * .. * .. Executable Statements .. * * Set NOTA and NOTB as true if A and B respectively are not * transposed and set NROWA, and NROWB as the number of rows * and columns of A and the number of rows of B respectively. * NOTA = LSAME( TRANSA, 'N' ) NOTB = LSAME( TRANSB, 'N' ) IF( NOTA )THEN NROWA = M ELSE NROWA = K END IF IF( NOTB )THEN NROWB = K ELSE NROWB = N END IF * * Test the input parameters. * INFO = 0 IF( ( .NOT.NOTA ).AND. $ ( .NOT.LSAME( TRANSA, 'C' ) ).AND. $ ( .NOT.LSAME( TRANSA, 'T' ) ) )THEN INFO = 1 ELSE IF( ( .NOT.NOTB ).AND. $ ( .NOT.LSAME( TRANSB, 'C' ) ).AND. $ ( .NOT.LSAME( TRANSB, 'T' ) ) )THEN INFO = 2 ELSE IF( M .LT.0 )THEN INFO = 3 ELSE IF( N .LT.0 )THEN INFO = 4 ELSE IF( K .LT.0 )THEN INFO = 5 ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN INFO = 8 ELSE IF( LDB.LT.MAX( 1, NROWB ) )THEN INFO = 10 ELSE IF( LDC.LT.MAX( 1, M ) )THEN INFO = 13 END IF IF( INFO.NE.0 )THEN CALL XERBLA( 'DGEMM ', INFO ) RETURN END IF * * Quick return if possible. * IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR. $ ( ( ( ALPHA.EQ.ZERO ).OR.( K.EQ.0 ) ).AND.( BETA.EQ.ONE ) ) ) $ RETURN * * And if alpha.eq.zero. * IF( ALPHA.EQ.ZERO )THEN IF( BETA.EQ.ZERO )THEN DO 20, J = 1, N DO 10, I = 1, M C( I, J ) = ZERO 10 CONTINUE 20 CONTINUE ELSE DO 40, J = 1, N DO 30, I = 1, M C( I, J ) = BETA*C( I, J ) 30 CONTINUE 40 CONTINUE END IF RETURN END IF * * Start the operations. * IF( NOTB )THEN IF( NOTA )THEN * * Form C := alpha*A*B + beta*C. * DO 90, J = 1, N IF( BETA.EQ.ZERO )THEN DO 50, I = 1, M C( I, J ) = ZERO 50 CONTINUE ELSE IF( BETA.NE.ONE )THEN DO 60, I = 1, M C( I, J ) = BETA*C( I, J ) 60 CONTINUE END IF DO 80, L = 1, K IF( B( L, J ).NE.ZERO )THEN TEMP = ALPHA*B( L, J ) DO 70, I = 1, M C( I, J ) = C( I, J ) + TEMP*A( I, L ) 70 CONTINUE END IF 80 CONTINUE 90 CONTINUE ELSE * * Form C := alpha*A'*B + beta*C * DO 120, J = 1, N DO 110, I = 1, M TEMP = ZERO DO 100, L = 1, K TEMP = TEMP + A( L, I )*B( L, J ) 100 CONTINUE IF( BETA.EQ.ZERO )THEN C( I, J ) = ALPHA*TEMP ELSE C( I, J ) = ALPHA*TEMP + BETA*C( I, J ) END IF 110 CONTINUE 120 CONTINUE END IF ELSE IF( NOTA )THEN * * Form C := alpha*A*B' + beta*C * DO 170, J = 1, N IF( BETA.EQ.ZERO )THEN DO 130, I = 1, M C( I, J ) = ZERO 130 CONTINUE ELSE IF( BETA.NE.ONE )THEN DO 140, I = 1, M C( I, J ) = BETA*C( I, J ) 140 CONTINUE END IF DO 160, L = 1, K IF( B( J, L ).NE.ZERO )THEN TEMP = ALPHA*B( J, L ) DO 150, I = 1, M C( I, J ) = C( I, J ) + TEMP*A( I, L ) 150 CONTINUE END IF 160 CONTINUE 170 CONTINUE ELSE * * Form C := alpha*A'*B' + beta*C * DO 200, J = 1, N DO 190, I = 1, M TEMP = ZERO DO 180, L = 1, K TEMP = TEMP + A( L, I )*B( J, L ) 180 CONTINUE IF( BETA.EQ.ZERO )THEN C( I, J ) = ALPHA*TEMP ELSE C( I, J ) = ALPHA*TEMP + BETA*C( I, J ) END IF 190 CONTINUE 200 CONTINUE END IF END IF * RETURN * * End of DGEMM . * END SUBROUTINE SGEMM ( TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, * ************************************************************************ * * File of the REAL Level-3 BLAS. * ========================================== * * SUBROUTINE SGEMM ( TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, * $ BETA, C, LDC ) * * SUBROUTINE SSYMM ( SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB, * $ BETA, C, LDC ) * * SUBROUTINE SSYRK ( UPLO, TRANS, N, K, ALPHA, A, LDA, * $ BETA, C, LDC ) * * SUBROUTINE SSYR2K( UPLO, TRANS, N, K, ALPHA, A, LDA, B, LDB, * $ BETA, C, LDC ) * * SUBROUTINE STRMM ( SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, * $ B, LDB ) * * SUBROUTINE STRSM ( SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, * $ B, LDB ) * * See: * * Dongarra J. J., Du Croz J. J., Duff I. and Hammarling S. * A set of Level 3 Basic Linear Algebra Subprograms. Technical * Memorandum No.88 (Revision 1), Mathematics and Computer Science * Division, Argonne National Laboratory, 9700 South Cass Avenue, * Argonne, Illinois 60439. * * ************************************************************************ * $ BETA, C, LDC ) * .. Scalar Arguments .. CHARACTER*1 TRANSA, TRANSB INTEGER M, N, K, LDA, LDB, LDC REAL ALPHA, BETA * .. Array Arguments .. REAL A( LDA, * ), B( LDB, * ), C( LDC, * ) * .. * * Purpose * ======= * * SGEMM performs one of the matrix-matrix operations * * C := alpha*op( A )*op( B ) + beta*C, * * where op( X ) is one of * * op( X ) = X or op( X ) = X', * * alpha and beta are scalars, and A, B and C are matrices, with op( A ) * an m by k matrix, op( B ) a k by n matrix and C an m by n matrix. * * Parameters * ========== * * TRANSA - CHARACTER*1. * On entry, TRANSA specifies the form of op( A ) to be used in * the matrix multiplication as follows: * * TRANSA = 'N' or 'n', op( A ) = A. * * TRANSA = 'T' or 't', op( A ) = A'. * * TRANSA = 'C' or 'c', op( A ) = A'. * * Unchanged on exit. * * TRANSB - CHARACTER*1. * On entry, TRANSB specifies the form of op( B ) to be used in * the matrix multiplication as follows: * * TRANSB = 'N' or 'n', op( B ) = B. * * TRANSB = 'T' or 't', op( B ) = B'. * * TRANSB = 'C' or 'c', op( B ) = B'. * * Unchanged on exit. * * M - INTEGER. * On entry, M specifies the number of rows of the matrix * op( A ) and of the matrix C. M must be at least zero. * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the number of columns of the matrix * op( B ) and the number of columns of the matrix C. N must be * at least zero. * Unchanged on exit. * * K - INTEGER. * On entry, K specifies the number of columns of the matrix * op( A ) and the number of rows of the matrix op( B ). K must * be at least zero. * Unchanged on exit. * * ALPHA - REAL . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * A - REAL array of DIMENSION ( LDA, ka ), where ka is * k when TRANSA = 'N' or 'n', and is m otherwise. * Before entry with TRANSA = 'N' or 'n', the leading m by k * part of the array A must contain the matrix A, otherwise * the leading k by m part of the array A must contain the * matrix A. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. When TRANSA = 'N' or 'n' then * LDA must be at least max( 1, m ), otherwise LDA must be at * least max( 1, k ). * Unchanged on exit. * * B - REAL array of DIMENSION ( LDB, kb ), where kb is * n when TRANSB = 'N' or 'n', and is k otherwise. * Before entry with TRANSB = 'N' or 'n', the leading k by n * part of the array B must contain the matrix B, otherwise * the leading n by k part of the array B must contain the * matrix B. * Unchanged on exit. * * LDB - INTEGER. * On entry, LDB specifies the first dimension of B as declared * in the calling (sub) program. When TRANSB = 'N' or 'n' then * LDB must be at least max( 1, k ), otherwise LDB must be at * least max( 1, n ). * Unchanged on exit. * * BETA - REAL . * On entry, BETA specifies the scalar beta. When BETA is * supplied as zero then C need not be set on input. * Unchanged on exit. * * C - REAL array of DIMENSION ( LDC, n ). * Before entry, the leading m by n part of the array C must * contain the matrix C, except when beta is zero, in which * case C need not be set on entry. * On exit, the array C is overwritten by the m by n matrix * ( alpha*op( A )*op( B ) + beta*C ). * * LDC - INTEGER. * On entry, LDC specifies the first dimension of C as declared * in the calling (sub) program. LDC must be at least * max( 1, m ). * Unchanged on exit. * * * Level 3 Blas routine. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. External Subroutines .. EXTERNAL XERBLA * .. Intrinsic Functions .. INTRINSIC MAX * .. Local Scalars .. LOGICAL NOTA, NOTB INTEGER I, INFO, J, L, NROWA, NROWB REAL TEMP * .. Parameters .. REAL ONE , ZERO PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) * .. * .. Executable Statements .. * * Set NOTA and NOTB as true if A and B respectively are not * transposed and set NROWA, and NROWB as the number of rows * and columns of A and the number of rows of B respectively. * NOTA = LSAME( TRANSA, 'N' ) NOTB = LSAME( TRANSB, 'N' ) IF( NOTA )THEN NROWA = M ELSE NROWA = K END IF IF( NOTB )THEN NROWB = K ELSE NROWB = N END IF * * Test the input parameters. * INFO = 0 IF( ( .NOT.NOTA ).AND. $ ( .NOT.LSAME( TRANSA, 'C' ) ).AND. $ ( .NOT.LSAME( TRANSA, 'T' ) ) )THEN INFO = 1 ELSE IF( ( .NOT.NOTB ).AND. $ ( .NOT.LSAME( TRANSB, 'C' ) ).AND. $ ( .NOT.LSAME( TRANSB, 'T' ) ) )THEN INFO = 2 ELSE IF( M .LT.0 )THEN INFO = 3 ELSE IF( N .LT.0 )THEN INFO = 4 ELSE IF( K .LT.0 )THEN INFO = 5 ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN INFO = 8 ELSE IF( LDB.LT.MAX( 1, NROWB ) )THEN INFO = 10 ELSE IF( LDC.LT.MAX( 1, M ) )THEN INFO = 13 END IF IF( INFO.NE.0 )THEN CALL XERBLA( 'SGEMM ', INFO ) RETURN END IF * * Quick return if possible. * IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR. $ ( ( ( ALPHA.EQ.ZERO ).OR.( K.EQ.0 ) ).AND.( BETA.EQ.ONE ) ) ) $ RETURN * * And if alpha.eq.zero. * IF( ALPHA.EQ.ZERO )THEN IF( BETA.EQ.ZERO )THEN DO 20, J = 1, N DO 10, I = 1, M C( I, J ) = ZERO 10 CONTINUE 20 CONTINUE ELSE DO 40, J = 1, N DO 30, I = 1, M C( I, J ) = BETA*C( I, J ) 30 CONTINUE 40 CONTINUE END IF RETURN END IF * * Start the operations. * IF( NOTB )THEN IF( NOTA )THEN * * Form C := alpha*A*B + beta*C. * DO 90, J = 1, N IF( BETA.EQ.ZERO )THEN DO 50, I = 1, M C( I, J ) = ZERO 50 CONTINUE ELSE IF( BETA.NE.ONE )THEN DO 60, I = 1, M C( I, J ) = BETA*C( I, J ) 60 CONTINUE END IF DO 80, L = 1, K IF( B( L, J ).NE.ZERO )THEN TEMP = ALPHA*B( L, J ) DO 70, I = 1, M C( I, J ) = C( I, J ) + TEMP*A( I, L ) 70 CONTINUE END IF 80 CONTINUE 90 CONTINUE ELSE * * Form C := alpha*A'*B + beta*C * DO 120, J = 1, N DO 110, I = 1, M TEMP = ZERO DO 100, L = 1, K TEMP = TEMP + A( L, I )*B( L, J ) 100 CONTINUE IF( BETA.EQ.ZERO )THEN C( I, J ) = ALPHA*TEMP ELSE C( I, J ) = ALPHA*TEMP + BETA*C( I, J ) END IF 110 CONTINUE 120 CONTINUE END IF ELSE IF( NOTA )THEN * * Form C := alpha*A*B' + beta*C * DO 170, J = 1, N IF( BETA.EQ.ZERO )THEN DO 130, I = 1, M C( I, J ) = ZERO 130 CONTINUE ELSE IF( BETA.NE.ONE )THEN DO 140, I = 1, M C( I, J ) = BETA*C( I, J ) 140 CONTINUE END IF DO 160, L = 1, K IF( B( J, L ).NE.ZERO )THEN TEMP = ALPHA*B( J, L ) DO 150, I = 1, M C( I, J ) = C( I, J ) + TEMP*A( I, L ) 150 CONTINUE END IF 160 CONTINUE 170 CONTINUE ELSE * * Form C := alpha*A'*B' + beta*C * DO 200, J = 1, N DO 190, I = 1, M TEMP = ZERO DO 180, L = 1, K TEMP = TEMP + A( L, I )*B( J, L ) 180 CONTINUE IF( BETA.EQ.ZERO )THEN C( I, J ) = ALPHA*TEMP ELSE C( I, J ) = ALPHA*TEMP + BETA*C( I, J ) END IF 190 CONTINUE 200 CONTINUE END IF END IF * RETURN * * End of SGEMM . * END C Toolpack tool decs employed. C Arg dimension set to *. C INTEGER FUNCTION IDAMAX(N,DX,INCX) C C FINDS THE INDEX OF ELEMENT HAVING MAX. ABSOLUTE VALUE. C JACK DONGARRA, LINPACK, 3/11/78. C C .. Scalar Arguments .. INTEGER INCX,N C .. C .. Array Arguments .. DOUBLE PRECISION DX(*) C .. C .. Local Scalars .. DOUBLE PRECISION DMAX INTEGER I,IX C .. C .. Intrinsic Functions .. INTRINSIC DABS C .. C .. Executable Statements .. C IDAMAX = 0 IF (N.LT.1) RETURN IDAMAX = 1 IF (N.EQ.1) RETURN IF (INCX.EQ.1) GO TO 20 C C CODE FOR INCREMENT NOT EQUAL TO 1 C IX = 1 DMAX = DABS(DX(1)) IX = IX + INCX DO 10 I = 2,N IF (DABS(DX(IX)).LE.DMAX) GO TO 5 IDAMAX = I DMAX = DABS(DX(IX)) 5 IX = IX + INCX 10 CONTINUE RETURN C C CODE FOR INCREMENT EQUAL TO 1 C 20 DMAX = DABS(DX(1)) DO 30 I = 2,N IF (DABS(DX(I)).LE.DMAX) GO TO 30 IDAMAX = I DMAX = DABS(DX(I)) 30 CONTINUE RETURN END C Toolpack tool decs employed. C Arg dimensions set to *. C INTEGER FUNCTION ISAMAX(N,SX,INCX) C C FINDS THE INDEX OF ELEMENT HAVING MAX. ABSOLUTE VALUE. C JACK DONGARRA, LINPACK, 3/11/78. C C .. Scalar Arguments .. INTEGER INCX,N C .. C .. Array Arguments .. REAL SX(*) C .. C .. Local Scalars .. REAL SMAX INTEGER I,IX C .. C .. Intrinsic Functions .. INTRINSIC ABS C .. C .. Executable Statements .. C ISAMAX = 0 IF (N.LT.1) RETURN ISAMAX = 1 IF (N.EQ.1) RETURN IF (INCX.EQ.1) GO TO 20 C C CODE FOR INCREMENT NOT EQUAL TO 1 C IX = 1 SMAX = ABS(SX(1)) IX = IX + INCX DO 10 I = 2,N IF (ABS(SX(IX)).LE.SMAX) GO TO 5 ISAMAX = I SMAX = ABS(SX(IX)) 5 IX = IX + INCX 10 CONTINUE RETURN C C CODE FOR INCREMENT EQUAL TO 1 C 20 SMAX = ABS(SX(1)) DO 30 I = 2,N IF (ABS(SX(I)).LE.SMAX) GO TO 30 ISAMAX = I SMAX = ABS(SX(I)) 30 CONTINUE RETURN END SUBROUTINE DTPSV ( UPLO, TRANS, DIAG, N, AP, X, INCX ) * ************************************************************************ * * .. Scalar Arguments .. INTEGER INCX, N CHARACTER*1 DIAG, TRANS, UPLO * .. Array Arguments .. DOUBLE PRECISION AP( * ), X( * ) * .. * * Purpose * ======= * * DTPSV solves one of the systems of equations * * A*x = b, or A'*x = b, * * where b and x are n element vectors and A is an n by n unit, or * non-unit, upper or lower triangular matrix, supplied in packed form. * * No test for singularity or near-singularity is included in this * routine. Such tests must be performed before calling this routine. * * Parameters * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the matrix is an upper or * lower triangular matrix as follows: * * UPLO = 'U' or 'u' A is an upper triangular matrix. * * UPLO = 'L' or 'l' A is a lower triangular matrix. * * Unchanged on exit. * * TRANS - CHARACTER*1. * On entry, TRANS specifies the equations to be solved as * follows: * * TRANS = 'N' or 'n' A*x = b. * * TRANS = 'T' or 't' A'*x = b. * * TRANS = 'C' or 'c' A'*x = b. * * Unchanged on exit. * * DIAG - CHARACTER*1. * On entry, DIAG specifies whether or not A is unit * triangular as follows: * * DIAG = 'U' or 'u' A is assumed to be unit triangular. * * DIAG = 'N' or 'n' A is not assumed to be unit * triangular. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * AP - DOUBLE PRECISION array of DIMENSION at least * ( ( n*( n + 1 ) )/2 ). * Before entry with UPLO = 'U' or 'u', the array AP must * contain the upper triangular matrix packed sequentially, * column by column, so that AP( 1 ) contains a( 1, 1 ), * AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) * respectively, and so on. * Before entry with UPLO = 'L' or 'l', the array AP must * contain the lower triangular matrix packed sequentially, * column by column, so that AP( 1 ) contains a( 1, 1 ), * AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) * respectively, and so on. * Note that when DIAG = 'U' or 'u', the diagonal elements of * A are not referenced, but are assumed to be unity. * Unchanged on exit. * * X - DOUBLE PRECISION array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element right-hand side vector b. On exit, X is overwritten * with the solution vector x. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * * .. Parameters .. DOUBLE PRECISION ZERO PARAMETER ( ZERO = 0.0D+0 ) * .. Local Scalars .. DOUBLE PRECISION TEMP INTEGER I, INFO, IX, J, JX, K, KK, KX LOGICAL NOUNIT * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 IF ( .NOT.LSAME( UPLO , 'U' ).AND. $ .NOT.LSAME( UPLO , 'L' ) )THEN INFO = 1 ELSE IF( .NOT.LSAME( TRANS, 'N' ).AND. $ .NOT.LSAME( TRANS, 'T' ).AND. $ .NOT.LSAME( TRANS, 'C' ) )THEN INFO = 2 ELSE IF( .NOT.LSAME( DIAG , 'U' ).AND. $ .NOT.LSAME( DIAG , 'N' ) )THEN INFO = 3 ELSE IF( N.LT.0 )THEN INFO = 4 ELSE IF( INCX.EQ.0 )THEN INFO = 7 END IF IF( INFO.NE.0 )THEN CALL XERBLA( 'DTPSV ', INFO ) RETURN END IF * * Quick return if possible. * IF( N.EQ.0 ) $ RETURN * NOUNIT = LSAME( DIAG, 'N' ) * * Set up the start point in X if the increment is not unity. This * will be ( N - 1 )*INCX too small for descending loops. * IF( INCX.LE.0 )THEN KX = 1 - ( N - 1 )*INCX ELSE IF( INCX.NE.1 )THEN KX = 1 END IF * * Start the operations. In this version the elements of AP are * accessed sequentially with one pass through AP. * IF( LSAME( TRANS, 'N' ) )THEN * * Form x := inv( A )*x. * IF( LSAME( UPLO, 'U' ) )THEN KK = ( N*( N + 1 ) )/2 IF( INCX.EQ.1 )THEN DO 20, J = N, 1, -1 IF( X( J ).NE.ZERO )THEN IF( NOUNIT ) $ X( J ) = X( J )/AP( KK ) TEMP = X( J ) K = KK - 1 DO 10, I = J - 1, 1, -1 X( I ) = X( I ) - TEMP*AP( K ) K = K - 1 10 CONTINUE END IF KK = KK - J 20 CONTINUE ELSE JX = KX + ( N - 1 )*INCX DO 40, J = N, 1, -1 IF( X( JX ).NE.ZERO )THEN IF( NOUNIT ) $ X( JX ) = X( JX )/AP( KK ) TEMP = X( JX ) IX = JX DO 30, K = KK - 1, KK - J + 1, -1 IX = IX - INCX X( IX ) = X( IX ) - TEMP*AP( K ) 30 CONTINUE END IF JX = JX - INCX KK = KK - J 40 CONTINUE END IF ELSE KK = 1 IF( INCX.EQ.1 )THEN DO 60, J = 1, N IF( X( J ).NE.ZERO )THEN IF( NOUNIT ) $ X( J ) = X( J )/AP( KK ) TEMP = X( J ) K = KK + 1 DO 50, I = J + 1, N X( I ) = X( I ) - TEMP*AP( K ) K = K + 1 50 CONTINUE END IF KK = KK + ( N - J + 1 ) 60 CONTINUE ELSE JX = KX DO 80, J = 1, N IF( X( JX ).NE.ZERO )THEN IF( NOUNIT ) $ X( JX ) = X( JX )/AP( KK ) TEMP = X( JX ) IX = JX DO 70, K = KK + 1, KK + N - J IX = IX + INCX X( IX ) = X( IX ) - TEMP*AP( K ) 70 CONTINUE END IF JX = JX + INCX KK = KK + ( N - J + 1 ) 80 CONTINUE END IF END IF ELSE * * Form x := inv( A' )*x. * IF( LSAME( UPLO, 'U' ) )THEN KK = 1 IF( INCX.EQ.1 )THEN DO 100, J = 1, N TEMP = X( J ) K = KK DO 90, I = 1, J - 1 TEMP = TEMP - AP( K )*X( I ) K = K + 1 90 CONTINUE IF( NOUNIT ) $ TEMP = TEMP/AP( KK + J - 1 ) X( J ) = TEMP KK = KK + J 100 CONTINUE ELSE JX = KX DO 120, J = 1, N TEMP = X( JX ) IX = KX DO 110, K = KK, KK + J - 2 TEMP = TEMP - AP( K )*X( IX ) IX = IX + INCX 110 CONTINUE IF( NOUNIT ) $ TEMP = TEMP/AP( KK + J - 1 ) X( JX ) = TEMP JX = JX + INCX KK = KK + J 120 CONTINUE END IF ELSE KK = ( N*( N + 1 ) )/2 IF( INCX.EQ.1 )THEN DO 140, J = N, 1, -1 TEMP = X( J ) K = KK DO 130, I = N, J + 1, -1 TEMP = TEMP - AP( K )*X( I ) K = K - 1 130 CONTINUE IF( NOUNIT ) $ TEMP = TEMP/AP( KK - N + J ) X( J ) = TEMP KK = KK - ( N - J + 1 ) 140 CONTINUE ELSE KX = KX + ( N - 1 )*INCX JX = KX DO 160, J = N, 1, -1 TEMP = X( JX ) IX = KX DO 150, K = KK, KK - ( N - ( J + 1 ) ), -1 TEMP = TEMP - AP( K )*X( IX ) IX = IX - INCX 150 CONTINUE IF( NOUNIT ) $ TEMP = TEMP/AP( KK - N + J ) X( JX ) = TEMP JX = JX - INCX KK = KK - (N - J + 1 ) 160 CONTINUE END IF END IF END IF * RETURN * * End of DTPSV . * END SUBROUTINE STPSV ( UPLO, TRANS, DIAG, N, AP, X, INCX ) * ************************************************************************ * * .. Scalar Arguments .. INTEGER INCX, N CHARACTER*1 DIAG, TRANS, UPLO * .. Array Arguments .. REAL AP( * ), X( * ) * .. * * Purpose * ======= * * STPSV solves one of the systems of equations * * A*x = b, or A'*x = b, * * where b and x are n element vectors and A is an n by n unit, or * non-unit, upper or lower triangular matrix, supplied in packed form. * * No test for singularity or near-singularity is included in this * routine. Such tests must be performed before calling this routine. * * Parameters * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the matrix is an upper or * lower triangular matrix as follows: * * UPLO = 'U' or 'u' A is an upper triangular matrix. * * UPLO = 'L' or 'l' A is a lower triangular matrix. * * Unchanged on exit. * * TRANS - CHARACTER*1. * On entry, TRANS specifies the equations to be solved as * follows: * * TRANS = 'N' or 'n' A*x = b. * * TRANS = 'T' or 't' A'*x = b. * * TRANS = 'C' or 'c' A'*x = b. * * Unchanged on exit. * * DIAG - CHARACTER*1. * On entry, DIAG specifies whether or not A is unit * triangular as follows: * * DIAG = 'U' or 'u' A is assumed to be unit triangular. * * DIAG = 'N' or 'n' A is not assumed to be unit * triangular. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * AP - REAL array of DIMENSION at least * ( ( n*( n + 1 ) )/2 ). * Before entry with UPLO = 'U' or 'u', the array AP must * contain the upper triangular matrix packed sequentially, * column by column, so that AP( 1 ) contains a( 1, 1 ), * AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) * respectively, and so on. * Before entry with UPLO = 'L' or 'l', the array AP must * contain the lower triangular matrix packed sequentially, * column by column, so that AP( 1 ) contains a( 1, 1 ), * AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) * respectively, and so on. * Note that when DIAG = 'U' or 'u', the diagonal elements of * A are not referenced, but are assumed to be unity. * Unchanged on exit. * * X - REAL array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element right-hand side vector b. On exit, X is overwritten * with the solution vector x. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * * .. Parameters .. REAL ZERO PARAMETER ( ZERO = 0.0E+0 ) * .. Local Scalars .. REAL TEMP INTEGER I, INFO, IX, J, JX, K, KK, KX LOGICAL NOUNIT * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 IF ( .NOT.LSAME( UPLO , 'U' ).AND. $ .NOT.LSAME( UPLO , 'L' ) )THEN INFO = 1 ELSE IF( .NOT.LSAME( TRANS, 'N' ).AND. $ .NOT.LSAME( TRANS, 'T' ).AND. $ .NOT.LSAME( TRANS, 'C' ) )THEN INFO = 2 ELSE IF( .NOT.LSAME( DIAG , 'U' ).AND. $ .NOT.LSAME( DIAG , 'N' ) )THEN INFO = 3 ELSE IF( N.LT.0 )THEN INFO = 4 ELSE IF( INCX.EQ.0 )THEN INFO = 7 END IF IF( INFO.NE.0 )THEN CALL XERBLA( 'STPSV ', INFO ) RETURN END IF * * Quick return if possible. * IF( N.EQ.0 ) $ RETURN * NOUNIT = LSAME( DIAG, 'N' ) * * Set up the start point in X if the increment is not unity. This * will be ( N - 1 )*INCX too small for descending loops. * IF( INCX.LE.0 )THEN KX = 1 - ( N - 1 )*INCX ELSE IF( INCX.NE.1 )THEN KX = 1 END IF * * Start the operations. In this version the elements of AP are * accessed sequentially with one pass through AP. * IF( LSAME( TRANS, 'N' ) )THEN * * Form x := inv( A )*x. * IF( LSAME( UPLO, 'U' ) )THEN KK = ( N*( N + 1 ) )/2 IF( INCX.EQ.1 )THEN DO 20, J = N, 1, -1 IF( X( J ).NE.ZERO )THEN IF( NOUNIT ) $ X( J ) = X( J )/AP( KK ) TEMP = X( J ) K = KK - 1 DO 10, I = J - 1, 1, -1 X( I ) = X( I ) - TEMP*AP( K ) K = K - 1 10 CONTINUE END IF KK = KK - J 20 CONTINUE ELSE JX = KX + ( N - 1 )*INCX DO 40, J = N, 1, -1 IF( X( JX ).NE.ZERO )THEN IF( NOUNIT ) $ X( JX ) = X( JX )/AP( KK ) TEMP = X( JX ) IX = JX DO 30, K = KK - 1, KK - J + 1, -1 IX = IX - INCX X( IX ) = X( IX ) - TEMP*AP( K ) 30 CONTINUE END IF JX = JX - INCX KK = KK - J 40 CONTINUE END IF ELSE KK = 1 IF( INCX.EQ.1 )THEN DO 60, J = 1, N IF( X( J ).NE.ZERO )THEN IF( NOUNIT ) $ X( J ) = X( J )/AP( KK ) TEMP = X( J ) K = KK + 1 DO 50, I = J + 1, N X( I ) = X( I ) - TEMP*AP( K ) K = K + 1 50 CONTINUE END IF KK = KK + ( N - J + 1 ) 60 CONTINUE ELSE JX = KX DO 80, J = 1, N IF( X( JX ).NE.ZERO )THEN IF( NOUNIT ) $ X( JX ) = X( JX )/AP( KK ) TEMP = X( JX ) IX = JX DO 70, K = KK + 1, KK + N - J IX = IX + INCX X( IX ) = X( IX ) - TEMP*AP( K ) 70 CONTINUE END IF JX = JX + INCX KK = KK + ( N - J + 1 ) 80 CONTINUE END IF END IF ELSE * * Form x := inv( A' )*x. * IF( LSAME( UPLO, 'U' ) )THEN KK = 1 IF( INCX.EQ.1 )THEN DO 100, J = 1, N TEMP = X( J ) K = KK DO 90, I = 1, J - 1 TEMP = TEMP - AP( K )*X( I ) K = K + 1 90 CONTINUE IF( NOUNIT ) $ TEMP = TEMP/AP( KK + J - 1 ) X( J ) = TEMP KK = KK + J 100 CONTINUE ELSE JX = KX DO 120, J = 1, N TEMP = X( JX ) IX = KX DO 110, K = KK, KK + J - 2 TEMP = TEMP - AP( K )*X( IX ) IX = IX + INCX 110 CONTINUE IF( NOUNIT ) $ TEMP = TEMP/AP( KK + J - 1 ) X( JX ) = TEMP JX = JX + INCX KK = KK + J 120 CONTINUE END IF ELSE KK = ( N*( N + 1 ) )/2 IF( INCX.EQ.1 )THEN DO 140, J = N, 1, -1 TEMP = X( J ) K = KK DO 130, I = N, J + 1, -1 TEMP = TEMP - AP( K )*X( I ) K = K - 1 130 CONTINUE IF( NOUNIT ) $ TEMP = TEMP/AP( KK - N + J ) X( J ) = TEMP KK = KK - ( N - J + 1 ) 140 CONTINUE ELSE KX = KX + ( N - 1 )*INCX JX = KX DO 160, J = N, 1, -1 TEMP = X( JX ) IX = KX DO 150, K = KK, KK - ( N - ( J + 1 ) ), -1 TEMP = TEMP - AP( K )*X( IX ) IX = IX - INCX 150 CONTINUE IF( NOUNIT ) $ TEMP = TEMP/AP( KK - N + J ) X( JX ) = TEMP JX = JX - INCX KK = KK - (N - J + 1 ) 160 CONTINUE END IF END IF END IF * RETURN * * End of STPSV . * END subroutine dswap (n,dx,incx,dy,incy) c c interchanges two vectors. c uses unrolled loops for increments equal one. c jack dongarra, linpack, 3/11/78. c modified 12/3/93, array(1) declarations changed to array(*) c double precision dx(*),dy(*),dtemp integer i,incx,incy,ix,iy,m,mp1,n c if(n.le.0)return if(incx.eq.1.and.incy.eq.1)go to 20 c c code for unequal increments or equal increments not equal c to 1 c ix = 1 iy = 1 if(incx.lt.0)ix = (-n+1)*incx + 1 if(incy.lt.0)iy = (-n+1)*incy + 1 do 10 i = 1,n dtemp = dx(ix) dx(ix) = dy(iy) dy(iy) = dtemp ix = ix + incx iy = iy + incy 10 continue return c c code for both increments equal to 1 c c c clean-up loop c 20 m = mod(n,3) if( m .eq. 0 ) go to 40 do 30 i = 1,m dtemp = dx(i) dx(i) = dy(i) dy(i) = dtemp 30 continue if( n .lt. 3 ) return 40 mp1 = m + 1 do 50 i = mp1,n,3 dtemp = dx(i) dx(i) = dy(i) dy(i) = dtemp dtemp = dx(i + 1) dx(i + 1) = dy(i + 1) dy(i + 1) = dtemp dtemp = dx(i + 2) dx(i + 2) = dy(i + 2) dy(i + 2) = dtemp 50 continue return end subroutine sswap (n,sx,incx,sy,incy) c c interchanges two vectors. c uses unrolled loops for increments equal to 1. c jack dongarra, linpack, 3/11/78. c modified 12/3/93, array(1) declarations changed to array(*) c real sx(*),sy(*),stemp integer i,incx,incy,ix,iy,m,mp1,n c if(n.le.0)return if(incx.eq.1.and.incy.eq.1)go to 20 c c code for unequal increments or equal increments not equal c to 1 c ix = 1 iy = 1 if(incx.lt.0)ix = (-n+1)*incx + 1 if(incy.lt.0)iy = (-n+1)*incy + 1 do 10 i = 1,n stemp = sx(ix) sx(ix) = sy(iy) sy(iy) = stemp ix = ix + incx iy = iy + incy 10 continue return c c code for both increments equal to 1 c c c clean-up loop c 20 m = mod(n,3) if( m .eq. 0 ) go to 40 do 30 i = 1,m stemp = sx(i) sx(i) = sy(i) sy(i) = stemp 30 continue if( n .lt. 3 ) return 40 mp1 = m + 1 do 50 i = mp1,n,3 stemp = sx(i) sx(i) = sy(i) sy(i) = stemp stemp = sx(i + 1) sx(i + 1) = sy(i + 1) sy(i + 1) = stemp stemp = sx(i + 2) sx(i + 2) = sy(i + 2) sy(i + 2) = stemp 50 continue return end SUBROUTINE DGEMV ( TRANS, M, N, ALPHA, A, LDA, X, INCX, $ BETA, Y, INCY ) * .. Scalar Arguments .. DOUBLE PRECISION ALPHA, BETA INTEGER INCX, INCY, LDA, M, N CHARACTER*1 TRANS * .. Array Arguments .. DOUBLE PRECISION A( LDA, * ), X( * ), Y( * ) * .. * * Purpose * ======= * * DGEMV performs one of the matrix-vector operations * * y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, * * where alpha and beta are scalars, x and y are vectors and A is an * m by n matrix. * * Parameters * ========== * * TRANS - CHARACTER*1. * On entry, TRANS specifies the operation to be performed as * follows: * * TRANS = 'N' or 'n' y := alpha*A*x + beta*y. * * TRANS = 'T' or 't' y := alpha*A'*x + beta*y. * * TRANS = 'C' or 'c' y := alpha*A'*x + beta*y. * * Unchanged on exit. * * M - INTEGER. * On entry, M specifies the number of rows of the matrix A. * M must be at least zero. * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the number of columns of the matrix A. * N must be at least zero. * Unchanged on exit. * * ALPHA - DOUBLE PRECISION. * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). * Before entry, the leading m by n part of the array A must * contain the matrix of coefficients. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * max( 1, m ). * Unchanged on exit. * * X - DOUBLE PRECISION array of DIMENSION at least * ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' * and at least * ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. * Before entry, the incremented array X must contain the * vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * BETA - DOUBLE PRECISION. * On entry, BETA specifies the scalar beta. When BETA is * supplied as zero then Y need not be set on input. * Unchanged on exit. * * Y - DOUBLE PRECISION array of DIMENSION at least * ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' * and at least * ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. * Before entry with BETA non-zero, the incremented array Y * must contain the vector y. On exit, Y is overwritten by the * updated vector y. * * INCY - INTEGER. * On entry, INCY specifies the increment for the elements of * Y. INCY must not be zero. * Unchanged on exit. * * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * * .. Parameters .. DOUBLE PRECISION ONE , ZERO PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) * .. Local Scalars .. DOUBLE PRECISION TEMP INTEGER I, INFO, IX, IY, J, JX, JY, KX, KY, LENX, LENY * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. External Subroutines .. EXTERNAL XERBLA * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 IF ( .NOT.LSAME( TRANS, 'N' ).AND. $ .NOT.LSAME( TRANS, 'T' ).AND. $ .NOT.LSAME( TRANS, 'C' ) )THEN INFO = 1 ELSE IF( M.LT.0 )THEN INFO = 2 ELSE IF( N.LT.0 )THEN INFO = 3 ELSE IF( LDA.LT.MAX( 1, M ) )THEN INFO = 6 ELSE IF( INCX.EQ.0 )THEN INFO = 8 ELSE IF( INCY.EQ.0 )THEN INFO = 11 END IF IF( INFO.NE.0 )THEN CALL XERBLA( 'DGEMV ', INFO ) RETURN END IF * * Quick return if possible. * IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR. $ ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) ) $ RETURN * * Set LENX and LENY, the lengths of the vectors x and y, and set * up the start points in X and Y. * IF( LSAME( TRANS, 'N' ) )THEN LENX = N LENY = M ELSE LENX = M LENY = N END IF IF( INCX.GT.0 )THEN KX = 1 ELSE KX = 1 - ( LENX - 1 )*INCX END IF IF( INCY.GT.0 )THEN KY = 1 ELSE KY = 1 - ( LENY - 1 )*INCY END IF * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through A. * * First form y := beta*y. * IF( BETA.NE.ONE )THEN IF( INCY.EQ.1 )THEN IF( BETA.EQ.ZERO )THEN DO 10, I = 1, LENY Y( I ) = ZERO 10 CONTINUE ELSE DO 20, I = 1, LENY Y( I ) = BETA*Y( I ) 20 CONTINUE END IF ELSE IY = KY IF( BETA.EQ.ZERO )THEN DO 30, I = 1, LENY Y( IY ) = ZERO IY = IY + INCY 30 CONTINUE ELSE DO 40, I = 1, LENY Y( IY ) = BETA*Y( IY ) IY = IY + INCY 40 CONTINUE END IF END IF END IF IF( ALPHA.EQ.ZERO ) $ RETURN IF( LSAME( TRANS, 'N' ) )THEN * * Form y := alpha*A*x + y. * JX = KX IF( INCY.EQ.1 )THEN DO 60, J = 1, N IF( X( JX ).NE.ZERO )THEN TEMP = ALPHA*X( JX ) DO 50, I = 1, M Y( I ) = Y( I ) + TEMP*A( I, J ) 50 CONTINUE END IF JX = JX + INCX 60 CONTINUE ELSE DO 80, J = 1, N IF( X( JX ).NE.ZERO )THEN TEMP = ALPHA*X( JX ) IY = KY DO 70, I = 1, M Y( IY ) = Y( IY ) + TEMP*A( I, J ) IY = IY + INCY 70 CONTINUE END IF JX = JX + INCX 80 CONTINUE END IF ELSE * * Form y := alpha*A'*x + y. * JY = KY IF( INCX.EQ.1 )THEN DO 100, J = 1, N TEMP = ZERO DO 90, I = 1, M TEMP = TEMP + A( I, J )*X( I ) 90 CONTINUE Y( JY ) = Y( JY ) + ALPHA*TEMP JY = JY + INCY 100 CONTINUE ELSE DO 120, J = 1, N TEMP = ZERO IX = KX DO 110, I = 1, M TEMP = TEMP + A( I, J )*X( IX ) IX = IX + INCX 110 CONTINUE Y( JY ) = Y( JY ) + ALPHA*TEMP JY = JY + INCY 120 CONTINUE END IF END IF * RETURN * * End of DGEMV . * END SUBROUTINE SGEMV ( TRANS, M, N, ALPHA, A, LDA, X, INCX, $ BETA, Y, INCY ) * .. Scalar Arguments .. REAL ALPHA, BETA INTEGER INCX, INCY, LDA, M, N CHARACTER*1 TRANS * .. Array Arguments .. REAL A( LDA, * ), X( * ), Y( * ) * .. * * Purpose * ======= * * SGEMV performs one of the matrix-vector operations * * y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, * * where alpha and beta are scalars, x and y are vectors and A is an * m by n matrix. * * Parameters * ========== * * TRANS - CHARACTER*1. * On entry, TRANS specifies the operation to be performed as * follows: * * TRANS = 'N' or 'n' y := alpha*A*x + beta*y. * * TRANS = 'T' or 't' y := alpha*A'*x + beta*y. * * TRANS = 'C' or 'c' y := alpha*A'*x + beta*y. * * Unchanged on exit. * * M - INTEGER. * On entry, M specifies the number of rows of the matrix A. * M must be at least zero. * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the number of columns of the matrix A. * N must be at least zero. * Unchanged on exit. * * ALPHA - REAL . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * A - REAL array of DIMENSION ( LDA, n ). * Before entry, the leading m by n part of the array A must * contain the matrix of coefficients. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * max( 1, m ). * Unchanged on exit. * * X - REAL array of DIMENSION at least * ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' * and at least * ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. * Before entry, the incremented array X must contain the * vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * BETA - REAL . * On entry, BETA specifies the scalar beta. When BETA is * supplied as zero then Y need not be set on input. * Unchanged on exit. * * Y - REAL array of DIMENSION at least * ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' * and at least * ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. * Before entry with BETA non-zero, the incremented array Y * must contain the vector y. On exit, Y is overwritten by the * updated vector y. * * INCY - INTEGER. * On entry, INCY specifies the increment for the elements of * Y. INCY must not be zero. * Unchanged on exit. * * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * * .. Parameters .. REAL ONE , ZERO PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) * .. Local Scalars .. REAL TEMP INTEGER I, INFO, IX, IY, J, JX, JY, KX, KY, LENX, LENY * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. External Subroutines .. EXTERNAL XERBLA * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 IF ( .NOT.LSAME( TRANS, 'N' ).AND. $ .NOT.LSAME( TRANS, 'T' ).AND. $ .NOT.LSAME( TRANS, 'C' ) )THEN INFO = 1 ELSE IF( M.LT.0 )THEN INFO = 2 ELSE IF( N.LT.0 )THEN INFO = 3 ELSE IF( LDA.LT.MAX( 1, M ) )THEN INFO = 6 ELSE IF( INCX.EQ.0 )THEN INFO = 8 ELSE IF( INCY.EQ.0 )THEN INFO = 11 END IF IF( INFO.NE.0 )THEN CALL XERBLA( 'SGEMV ', INFO ) RETURN END IF * * Quick return if possible. * IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR. $ ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) ) $ RETURN * * Set LENX and LENY, the lengths of the vectors x and y, and set * up the start points in X and Y. * IF( LSAME( TRANS, 'N' ) )THEN LENX = N LENY = M ELSE LENX = M LENY = N END IF IF( INCX.GT.0 )THEN KX = 1 ELSE KX = 1 - ( LENX - 1 )*INCX END IF IF( INCY.GT.0 )THEN KY = 1 ELSE KY = 1 - ( LENY - 1 )*INCY END IF * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through A. * * First form y := beta*y. * IF( BETA.NE.ONE )THEN IF( INCY.EQ.1 )THEN IF( BETA.EQ.ZERO )THEN DO 10, I = 1, LENY Y( I ) = ZERO 10 CONTINUE ELSE DO 20, I = 1, LENY Y( I ) = BETA*Y( I ) 20 CONTINUE END IF ELSE IY = KY IF( BETA.EQ.ZERO )THEN DO 30, I = 1, LENY Y( IY ) = ZERO IY = IY + INCY 30 CONTINUE ELSE DO 40, I = 1, LENY Y( IY ) = BETA*Y( IY ) IY = IY + INCY 40 CONTINUE END IF END IF END IF IF( ALPHA.EQ.ZERO ) $ RETURN IF( LSAME( TRANS, 'N' ) )THEN * * Form y := alpha*A*x + y. * JX = KX IF( INCY.EQ.1 )THEN DO 60, J = 1, N IF( X( JX ).NE.ZERO )THEN TEMP = ALPHA*X( JX ) DO 50, I = 1, M Y( I ) = Y( I ) + TEMP*A( I, J ) 50 CONTINUE END IF JX = JX + INCX 60 CONTINUE ELSE DO 80, J = 1, N IF( X( JX ).NE.ZERO )THEN TEMP = ALPHA*X( JX ) IY = KY DO 70, I = 1, M Y( IY ) = Y( IY ) + TEMP*A( I, J ) IY = IY + INCY 70 CONTINUE END IF JX = JX + INCX 80 CONTINUE END IF ELSE * * Form y := alpha*A'*x + y. * JY = KY IF( INCX.EQ.1 )THEN DO 100, J = 1, N TEMP = ZERO DO 90, I = 1, M TEMP = TEMP + A( I, J )*X( I ) 90 CONTINUE Y( JY ) = Y( JY ) + ALPHA*TEMP JY = JY + INCY 100 CONTINUE ELSE DO 120, J = 1, N TEMP = ZERO IX = KX DO 110, I = 1, M TEMP = TEMP + A( I, J )*X( IX ) IX = IX + INCX 110 CONTINUE Y( JY ) = Y( JY ) + ALPHA*TEMP JY = JY + INCY 120 CONTINUE END IF END IF * RETURN * * End of SGEMV . * END SUBROUTINE DTRSM ( SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, * ************************************************************************ * $ B, LDB ) * .. Scalar Arguments .. CHARACTER*1 SIDE, UPLO, TRANSA, DIAG INTEGER M, N, LDA, LDB DOUBLE PRECISION ALPHA * .. Array Arguments .. DOUBLE PRECISION A( LDA, * ), B( LDB, * ) * .. * * Purpose * ======= * * DTRSM solves one of the matrix equations * * op( A )*X = alpha*B, or X*op( A ) = alpha*B, * * where alpha is a scalar, X and B are m by n matrices, A is a unit, or * non-unit, upper or lower triangular matrix and op( A ) is one of * * op( A ) = A or op( A ) = A'. * * The matrix X is overwritten on B. * * Parameters * ========== * * SIDE - CHARACTER*1. * On entry, SIDE specifies whether op( A ) appears on the left * or right of X as follows: * * SIDE = 'L' or 'l' op( A )*X = alpha*B. * * SIDE = 'R' or 'r' X*op( A ) = alpha*B. * * Unchanged on exit. * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the matrix A is an upper or * lower triangular matrix as follows: * * UPLO = 'U' or 'u' A is an upper triangular matrix. * * UPLO = 'L' or 'l' A is a lower triangular matrix. * * Unchanged on exit. * * TRANSA - CHARACTER*1. * On entry, TRANSA specifies the form of op( A ) to be used in * the matrix multiplication as follows: * * TRANSA = 'N' or 'n' op( A ) = A. * * TRANSA = 'T' or 't' op( A ) = A'. * * TRANSA = 'C' or 'c' op( A ) = A'. * * Unchanged on exit. * * DIAG - CHARACTER*1. * On entry, DIAG specifies whether or not A is unit triangular * as follows: * * DIAG = 'U' or 'u' A is assumed to be unit triangular. * * DIAG = 'N' or 'n' A is not assumed to be unit * triangular. * * Unchanged on exit. * * M - INTEGER. * On entry, M specifies the number of rows of B. M must be at * least zero. * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the number of columns of B. N must be * at least zero. * Unchanged on exit. * * ALPHA - DOUBLE PRECISION. * On entry, ALPHA specifies the scalar alpha. When alpha is * zero then A is not referenced and B need not be set before * entry. * Unchanged on exit. * * A - DOUBLE PRECISION array of DIMENSION ( LDA, k ), where k is m * when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'. * Before entry with UPLO = 'U' or 'u', the leading k by k * upper triangular part of the array A must contain the upper * triangular matrix and the strictly lower triangular part of * A is not referenced. * Before entry with UPLO = 'L' or 'l', the leading k by k * lower triangular part of the array A must contain the lower * triangular matrix and the strictly upper triangular part of * A is not referenced. * Note that when DIAG = 'U' or 'u', the diagonal elements of * A are not referenced either, but are assumed to be unity. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. When SIDE = 'L' or 'l' then * LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' * then LDA must be at least max( 1, n ). * Unchanged on exit. * * B - DOUBLE PRECISION array of DIMENSION ( LDB, n ). * Before entry, the leading m by n part of the array B must * contain the right-hand side matrix B, and on exit is * overwritten by the solution matrix X. * * LDB - INTEGER. * On entry, LDB specifies the first dimension of B as declared * in the calling (sub) program. LDB must be at least * max( 1, m ). * Unchanged on exit. * * * Level 3 Blas routine. * * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. External Subroutines .. EXTERNAL XERBLA * .. Intrinsic Functions .. INTRINSIC MAX * .. Local Scalars .. LOGICAL LSIDE, NOUNIT, UPPER INTEGER I, INFO, J, K, NROWA DOUBLE PRECISION TEMP * .. Parameters .. DOUBLE PRECISION ONE , ZERO PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) * .. * .. Executable Statements .. * * Test the input parameters. * LSIDE = LSAME( SIDE , 'L' ) IF( LSIDE )THEN NROWA = M ELSE NROWA = N END IF NOUNIT = LSAME( DIAG , 'N' ) UPPER = LSAME( UPLO , 'U' ) * INFO = 0 IF( ( .NOT.LSIDE ).AND. $ ( .NOT.LSAME( SIDE , 'R' ) ) )THEN INFO = 1 ELSE IF( ( .NOT.UPPER ).AND. $ ( .NOT.LSAME( UPLO , 'L' ) ) )THEN INFO = 2 ELSE IF( ( .NOT.LSAME( TRANSA, 'N' ) ).AND. $ ( .NOT.LSAME( TRANSA, 'T' ) ).AND. $ ( .NOT.LSAME( TRANSA, 'C' ) ) )THEN INFO = 3 ELSE IF( ( .NOT.LSAME( DIAG , 'U' ) ).AND. $ ( .NOT.LSAME( DIAG , 'N' ) ) )THEN INFO = 4 ELSE IF( M .LT.0 )THEN INFO = 5 ELSE IF( N .LT.0 )THEN INFO = 6 ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN INFO = 9 ELSE IF( LDB.LT.MAX( 1, M ) )THEN INFO = 11 END IF IF( INFO.NE.0 )THEN CALL XERBLA( 'DTRSM ', INFO ) RETURN END IF * * Quick return if possible. * IF( N.EQ.0 ) $ RETURN * * And when alpha.eq.zero. * IF( ALPHA.EQ.ZERO )THEN DO 20, J = 1, N DO 10, I = 1, M B( I, J ) = ZERO 10 CONTINUE 20 CONTINUE RETURN END IF * * Start the operations. * IF( LSIDE )THEN IF( LSAME( TRANSA, 'N' ) )THEN * * Form B := alpha*inv( A )*B. * IF( UPPER )THEN DO 60, J = 1, N IF( ALPHA.NE.ONE )THEN DO 30, I = 1, M B( I, J ) = ALPHA*B( I, J ) 30 CONTINUE END IF DO 50, K = M, 1, -1 IF( B( K, J ).NE.ZERO )THEN IF( NOUNIT ) $ B( K, J ) = B( K, J )/A( K, K ) DO 40, I = 1, K - 1 B( I, J ) = B( I, J ) - B( K, J )*A( I, K ) 40 CONTINUE END IF 50 CONTINUE 60 CONTINUE ELSE DO 100, J = 1, N IF( ALPHA.NE.ONE )THEN DO 70, I = 1, M B( I, J ) = ALPHA*B( I, J ) 70 CONTINUE END IF DO 90 K = 1, M IF( B( K, J ).NE.ZERO )THEN IF( NOUNIT ) $ B( K, J ) = B( K, J )/A( K, K ) DO 80, I = K + 1, M B( I, J ) = B( I, J ) - B( K, J )*A( I, K ) 80 CONTINUE END IF 90 CONTINUE 100 CONTINUE END IF ELSE * * Form B := alpha*inv( A' )*B. * IF( UPPER )THEN DO 130, J = 1, N DO 120, I = 1, M TEMP = ALPHA*B( I, J ) DO 110, K = 1, I - 1 TEMP = TEMP - A( K, I )*B( K, J ) 110 CONTINUE IF( NOUNIT ) $ TEMP = TEMP/A( I, I ) B( I, J ) = TEMP 120 CONTINUE 130 CONTINUE ELSE DO 160, J = 1, N DO 150, I = M, 1, -1 TEMP = ALPHA*B( I, J ) DO 140, K = I + 1, M TEMP = TEMP - A( K, I )*B( K, J ) 140 CONTINUE IF( NOUNIT ) $ TEMP = TEMP/A( I, I ) B( I, J ) = TEMP 150 CONTINUE 160 CONTINUE END IF END IF ELSE IF( LSAME( TRANSA, 'N' ) )THEN * * Form B := alpha*B*inv( A ). * IF( UPPER )THEN DO 210, J = 1, N IF( ALPHA.NE.ONE )THEN DO 170, I = 1, M B( I, J ) = ALPHA*B( I, J ) 170 CONTINUE END IF DO 190, K = 1, J - 1 IF( A( K, J ).NE.ZERO )THEN DO 180, I = 1, M B( I, J ) = B( I, J ) - A( K, J )*B( I, K ) 180 CONTINUE END IF 190 CONTINUE IF( NOUNIT )THEN TEMP = ONE/A( J, J ) DO 200, I = 1, M B( I, J ) = TEMP*B( I, J ) 200 CONTINUE END IF 210 CONTINUE ELSE DO 260, J = N, 1, -1 IF( ALPHA.NE.ONE )THEN DO 220, I = 1, M B( I, J ) = ALPHA*B( I, J ) 220 CONTINUE END IF DO 240, K = J + 1, N IF( A( K, J ).NE.ZERO )THEN DO 230, I = 1, M B( I, J ) = B( I, J ) - A( K, J )*B( I, K ) 230 CONTINUE END IF 240 CONTINUE IF( NOUNIT )THEN TEMP = ONE/A( J, J ) DO 250, I = 1, M B( I, J ) = TEMP*B( I, J ) 250 CONTINUE END IF 260 CONTINUE END IF ELSE * * Form B := alpha*B*inv( A' ). * IF( UPPER )THEN DO 310, K = N, 1, -1 IF( NOUNIT )THEN TEMP = ONE/A( K, K ) DO 270, I = 1, M B( I, K ) = TEMP*B( I, K ) 270 CONTINUE END IF DO 290, J = 1, K - 1 IF( A( J, K ).NE.ZERO )THEN TEMP = A( J, K ) DO 280, I = 1, M B( I, J ) = B( I, J ) - TEMP*B( I, K ) 280 CONTINUE END IF 290 CONTINUE IF( ALPHA.NE.ONE )THEN DO 300, I = 1, M B( I, K ) = ALPHA*B( I, K ) 300 CONTINUE END IF 310 CONTINUE ELSE DO 360, K = 1, N IF( NOUNIT )THEN TEMP = ONE/A( K, K ) DO 320, I = 1, M B( I, K ) = TEMP*B( I, K ) 320 CONTINUE END IF DO 340, J = K + 1, N IF( A( J, K ).NE.ZERO )THEN TEMP = A( J, K ) DO 330, I = 1, M B( I, J ) = B( I, J ) - TEMP*B( I, K ) 330 CONTINUE END IF 340 CONTINUE IF( ALPHA.NE.ONE )THEN DO 350, I = 1, M B( I, K ) = ALPHA*B( I, K ) 350 CONTINUE END IF 360 CONTINUE END IF END IF END IF * RETURN * * End of DTRSM . * END SUBROUTINE DTRSV ( UPLO, TRANS, DIAG, N, A, LDA, X, INCX ) * ************************************************************************ * * .. Scalar Arguments .. INTEGER INCX, LDA, N CHARACTER*1 DIAG, TRANS, UPLO * .. Array Arguments .. DOUBLE PRECISION A( LDA, * ), X( * ) * .. * * Purpose * ======= * * DTRSV solves one of the systems of equations * * A*x = b, or A'*x = b, * * where b and x are n element vectors and A is an n by n unit, or * non-unit, upper or lower triangular matrix. * * No test for singularity or near-singularity is included in this * routine. Such tests must be performed before calling this routine. * * Parameters * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the matrix is an upper or * lower triangular matrix as follows: * * UPLO = 'U' or 'u' A is an upper triangular matrix. * * UPLO = 'L' or 'l' A is a lower triangular matrix. * * Unchanged on exit. * * TRANS - CHARACTER*1. * On entry, TRANS specifies the equations to be solved as * follows: * * TRANS = 'N' or 'n' A*x = b. * * TRANS = 'T' or 't' A'*x = b. * * TRANS = 'C' or 'c' A'*x = b. * * Unchanged on exit. * * DIAG - CHARACTER*1. * On entry, DIAG specifies whether or not A is unit * triangular as follows: * * DIAG = 'U' or 'u' A is assumed to be unit triangular. * * DIAG = 'N' or 'n' A is not assumed to be unit * triangular. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). * Before entry with UPLO = 'U' or 'u', the leading n by n * upper triangular part of the array A must contain the upper * triangular matrix and the strictly lower triangular part of * A is not referenced. * Before entry with UPLO = 'L' or 'l', the leading n by n * lower triangular part of the array A must contain the lower * triangular matrix and the strictly upper triangular part of * A is not referenced. * Note that when DIAG = 'U' or 'u', the diagonal elements of * A are not referenced either, but are assumed to be unity. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * max( 1, n ). * Unchanged on exit. * * X - DOUBLE PRECISION array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element right-hand side vector b. On exit, X is overwritten * with the solution vector x. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * * .. Parameters .. DOUBLE PRECISION ZERO PARAMETER ( ZERO = 0.0D+0 ) * .. Local Scalars .. DOUBLE PRECISION TEMP INTEGER I, INFO, IX, J, JX, KX LOGICAL NOUNIT * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. External Subroutines .. EXTERNAL XERBLA * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 IF ( .NOT.LSAME( UPLO , 'U' ).AND. $ .NOT.LSAME( UPLO , 'L' ) )THEN INFO = 1 ELSE IF( .NOT.LSAME( TRANS, 'N' ).AND. $ .NOT.LSAME( TRANS, 'T' ).AND. $ .NOT.LSAME( TRANS, 'C' ) )THEN INFO = 2 ELSE IF( .NOT.LSAME( DIAG , 'U' ).AND. $ .NOT.LSAME( DIAG , 'N' ) )THEN INFO = 3 ELSE IF( N.LT.0 )THEN INFO = 4 ELSE IF( LDA.LT.MAX( 1, N ) )THEN INFO = 6 ELSE IF( INCX.EQ.0 )THEN INFO = 8 END IF IF( INFO.NE.0 )THEN CALL XERBLA( 'DTRSV ', INFO ) RETURN END IF * * Quick return if possible. * IF( N.EQ.0 ) $ RETURN * NOUNIT = LSAME( DIAG, 'N' ) * * Set up the start point in X if the increment is not unity. This * will be ( N - 1 )*INCX too small for descending loops. * IF( INCX.LE.0 )THEN KX = 1 - ( N - 1 )*INCX ELSE IF( INCX.NE.1 )THEN KX = 1 END IF * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through A. * IF( LSAME( TRANS, 'N' ) )THEN * * Form x := inv( A )*x. * IF( LSAME( UPLO, 'U' ) )THEN IF( INCX.EQ.1 )THEN DO 20, J = N, 1, -1 IF( X( J ).NE.ZERO )THEN IF( NOUNIT ) $ X( J ) = X( J )/A( J, J ) TEMP = X( J ) DO 10, I = J - 1, 1, -1 X( I ) = X( I ) - TEMP*A( I, J ) 10 CONTINUE END IF 20 CONTINUE ELSE JX = KX + ( N - 1 )*INCX DO 40, J = N, 1, -1 IF( X( JX ).NE.ZERO )THEN IF( NOUNIT ) $ X( JX ) = X( JX )/A( J, J ) TEMP = X( JX ) IX = JX DO 30, I = J - 1, 1, -1 IX = IX - INCX X( IX ) = X( IX ) - TEMP*A( I, J ) 30 CONTINUE END IF JX = JX - INCX 40 CONTINUE END IF ELSE IF( INCX.EQ.1 )THEN DO 60, J = 1, N IF( X( J ).NE.ZERO )THEN IF( NOUNIT ) $ X( J ) = X( J )/A( J, J ) TEMP = X( J ) DO 50, I = J + 1, N X( I ) = X( I ) - TEMP*A( I, J ) 50 CONTINUE END IF 60 CONTINUE ELSE JX = KX DO 80, J = 1, N IF( X( JX ).NE.ZERO )THEN IF( NOUNIT ) $ X( JX ) = X( JX )/A( J, J ) TEMP = X( JX ) IX = JX DO 70, I = J + 1, N IX = IX + INCX X( IX ) = X( IX ) - TEMP*A( I, J ) 70 CONTINUE END IF JX = JX + INCX 80 CONTINUE END IF END IF ELSE * * Form x := inv( A' )*x. * IF( LSAME( UPLO, 'U' ) )THEN IF( INCX.EQ.1 )THEN DO 100, J = 1, N TEMP = X( J ) DO 90, I = 1, J - 1 TEMP = TEMP - A( I, J )*X( I ) 90 CONTINUE IF( NOUNIT ) $ TEMP = TEMP/A( J, J ) X( J ) = TEMP 100 CONTINUE ELSE JX = KX DO 120, J = 1, N TEMP = X( JX ) IX = KX DO 110, I = 1, J - 1 TEMP = TEMP - A( I, J )*X( IX ) IX = IX + INCX 110 CONTINUE IF( NOUNIT ) $ TEMP = TEMP/A( J, J ) X( JX ) = TEMP JX = JX + INCX 120 CONTINUE END IF ELSE IF( INCX.EQ.1 )THEN DO 140, J = N, 1, -1 TEMP = X( J ) DO 130, I = N, J + 1, -1 TEMP = TEMP - A( I, J )*X( I ) 130 CONTINUE IF( NOUNIT ) $ TEMP = TEMP/A( J, J ) X( J ) = TEMP 140 CONTINUE ELSE KX = KX + ( N - 1 )*INCX JX = KX DO 160, J = N, 1, -1 TEMP = X( JX ) IX = KX DO 150, I = N, J + 1, -1 TEMP = TEMP - A( I, J )*X( IX ) IX = IX - INCX 150 CONTINUE IF( NOUNIT ) $ TEMP = TEMP/A( J, J ) X( JX ) = TEMP JX = JX - INCX 160 CONTINUE END IF END IF END IF * RETURN * * End of DTRSV . * END SUBROUTINE STRSM ( SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, * ************************************************************************ * $ B, LDB ) * .. Scalar Arguments .. CHARACTER*1 SIDE, UPLO, TRANSA, DIAG INTEGER M, N, LDA, LDB REAL ALPHA * .. Array Arguments .. REAL A( LDA, * ), B( LDB, * ) * .. * * Purpose * ======= * * STRSM solves one of the matrix equations * * op( A )*X = alpha*B, or X*op( A ) = alpha*B, * * where alpha is a scalar, X and B are m by n matrices, A is a unit, or * non-unit, upper or lower triangular matrix and op( A ) is one of * * op( A ) = A or op( A ) = A'. * * The matrix X is overwritten on B. * * Parameters * ========== * * SIDE - CHARACTER*1. * On entry, SIDE specifies whether op( A ) appears on the left * or right of X as follows: * * SIDE = 'L' or 'l' op( A )*X = alpha*B. * * SIDE = 'R' or 'r' X*op( A ) = alpha*B. * * Unchanged on exit. * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the matrix A is an upper or * lower triangular matrix as follows: * * UPLO = 'U' or 'u' A is an upper triangular matrix. * * UPLO = 'L' or 'l' A is a lower triangular matrix. * * Unchanged on exit. * * TRANSA - CHARACTER*1. * On entry, TRANSA specifies the form of op( A ) to be used in * the matrix multiplication as follows: * * TRANSA = 'N' or 'n' op( A ) = A. * * TRANSA = 'T' or 't' op( A ) = A'. * * TRANSA = 'C' or 'c' op( A ) = A'. * * Unchanged on exit. * * DIAG - CHARACTER*1. * On entry, DIAG specifies whether or not A is unit triangular * as follows: * * DIAG = 'U' or 'u' A is assumed to be unit triangular. * * DIAG = 'N' or 'n' A is not assumed to be unit * triangular. * * Unchanged on exit. * * M - INTEGER. * On entry, M specifies the number of rows of B. M must be at * least zero. * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the number of columns of B. N must be * at least zero. * Unchanged on exit. * * ALPHA - REAL . * On entry, ALPHA specifies the scalar alpha. When alpha is * zero then A is not referenced and B need not be set before * entry. * Unchanged on exit. * * A - REAL array of DIMENSION ( LDA, k ), where k is m * when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'. * Before entry with UPLO = 'U' or 'u', the leading k by k * upper triangular part of the array A must contain the upper * triangular matrix and the strictly lower triangular part of * A is not referenced. * Before entry with UPLO = 'L' or 'l', the leading k by k * lower triangular part of the array A must contain the lower * triangular matrix and the strictly upper triangular part of * A is not referenced. * Note that when DIAG = 'U' or 'u', the diagonal elements of * A are not referenced either, but are assumed to be unity. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. When SIDE = 'L' or 'l' then * LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' * then LDA must be at least max( 1, n ). * Unchanged on exit. * * B - REAL array of DIMENSION ( LDB, n ). * Before entry, the leading m by n part of the array B must * contain the right-hand side matrix B, and on exit is * overwritten by the solution matrix X. * * LDB - INTEGER. * On entry, LDB specifies the first dimension of B as declared * in the calling (sub) program. LDB must be at least * max( 1, m ). * Unchanged on exit. * * * Level 3 Blas routine. * * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. External Subroutines .. EXTERNAL XERBLA * .. Intrinsic Functions .. INTRINSIC MAX * .. Local Scalars .. LOGICAL LSIDE, NOUNIT, UPPER INTEGER I, INFO, J, K, NROWA REAL TEMP * .. Parameters .. REAL ONE , ZERO PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) * .. * .. Executable Statements .. * * Test the input parameters. * LSIDE = LSAME( SIDE , 'L' ) IF( LSIDE )THEN NROWA = M ELSE NROWA = N END IF NOUNIT = LSAME( DIAG , 'N' ) UPPER = LSAME( UPLO , 'U' ) * INFO = 0 IF( ( .NOT.LSIDE ).AND. $ ( .NOT.LSAME( SIDE , 'R' ) ) )THEN INFO = 1 ELSE IF( ( .NOT.UPPER ).AND. $ ( .NOT.LSAME( UPLO , 'L' ) ) )THEN INFO = 2 ELSE IF( ( .NOT.LSAME( TRANSA, 'N' ) ).AND. $ ( .NOT.LSAME( TRANSA, 'T' ) ).AND. $ ( .NOT.LSAME( TRANSA, 'C' ) ) )THEN INFO = 3 ELSE IF( ( .NOT.LSAME( DIAG , 'U' ) ).AND. $ ( .NOT.LSAME( DIAG , 'N' ) ) )THEN INFO = 4 ELSE IF( M .LT.0 )THEN INFO = 5 ELSE IF( N .LT.0 )THEN INFO = 6 ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN INFO = 9 ELSE IF( LDB.LT.MAX( 1, M ) )THEN INFO = 11 END IF IF( INFO.NE.0 )THEN CALL XERBLA( 'STRSM ', INFO ) RETURN END IF * * Quick return if possible. * IF( N.EQ.0 ) $ RETURN * * And when alpha.eq.zero. * IF( ALPHA.EQ.ZERO )THEN DO 20, J = 1, N DO 10, I = 1, M B( I, J ) = ZERO 10 CONTINUE 20 CONTINUE RETURN END IF * * Start the operations. * IF( LSIDE )THEN IF( LSAME( TRANSA, 'N' ) )THEN * * Form B := alpha*inv( A )*B. * IF( UPPER )THEN DO 60, J = 1, N IF( ALPHA.NE.ONE )THEN DO 30, I = 1, M B( I, J ) = ALPHA*B( I, J ) 30 CONTINUE END IF DO 50, K = M, 1, -1 IF( B( K, J ).NE.ZERO )THEN IF( NOUNIT ) $ B( K, J ) = B( K, J )/A( K, K ) DO 40, I = 1, K - 1 B( I, J ) = B( I, J ) - B( K, J )*A( I, K ) 40 CONTINUE END IF 50 CONTINUE 60 CONTINUE ELSE DO 100, J = 1, N IF( ALPHA.NE.ONE )THEN DO 70, I = 1, M B( I, J ) = ALPHA*B( I, J ) 70 CONTINUE END IF DO 90 K = 1, M IF( B( K, J ).NE.ZERO )THEN IF( NOUNIT ) $ B( K, J ) = B( K, J )/A( K, K ) DO 80, I = K + 1, M B( I, J ) = B( I, J ) - B( K, J )*A( I, K ) 80 CONTINUE END IF 90 CONTINUE 100 CONTINUE END IF ELSE * * Form B := alpha*inv( A' )*B. * IF( UPPER )THEN DO 130, J = 1, N DO 120, I = 1, M TEMP = ALPHA*B( I, J ) DO 110, K = 1, I - 1 TEMP = TEMP - A( K, I )*B( K, J ) 110 CONTINUE IF( NOUNIT ) $ TEMP = TEMP/A( I, I ) B( I, J ) = TEMP 120 CONTINUE 130 CONTINUE ELSE DO 160, J = 1, N DO 150, I = M, 1, -1 TEMP = ALPHA*B( I, J ) DO 140, K = I + 1, M TEMP = TEMP - A( K, I )*B( K, J ) 140 CONTINUE IF( NOUNIT ) $ TEMP = TEMP/A( I, I ) B( I, J ) = TEMP 150 CONTINUE 160 CONTINUE END IF END IF ELSE IF( LSAME( TRANSA, 'N' ) )THEN * * Form B := alpha*B*inv( A ). * IF( UPPER )THEN DO 210, J = 1, N IF( ALPHA.NE.ONE )THEN DO 170, I = 1, M B( I, J ) = ALPHA*B( I, J ) 170 CONTINUE END IF DO 190, K = 1, J - 1 IF( A( K, J ).NE.ZERO )THEN DO 180, I = 1, M B( I, J ) = B( I, J ) - A( K, J )*B( I, K ) 180 CONTINUE END IF 190 CONTINUE IF( NOUNIT )THEN TEMP = ONE/A( J, J ) DO 200, I = 1, M B( I, J ) = TEMP*B( I, J ) 200 CONTINUE END IF 210 CONTINUE ELSE DO 260, J = N, 1, -1 IF( ALPHA.NE.ONE )THEN DO 220, I = 1, M B( I, J ) = ALPHA*B( I, J ) 220 CONTINUE END IF DO 240, K = J + 1, N IF( A( K, J ).NE.ZERO )THEN DO 230, I = 1, M B( I, J ) = B( I, J ) - A( K, J )*B( I, K ) 230 CONTINUE END IF 240 CONTINUE IF( NOUNIT )THEN TEMP = ONE/A( J, J ) DO 250, I = 1, M B( I, J ) = TEMP*B( I, J ) 250 CONTINUE END IF 260 CONTINUE END IF ELSE * * Form B := alpha*B*inv( A' ). * IF( UPPER )THEN DO 310, K = N, 1, -1 IF( NOUNIT )THEN TEMP = ONE/A( K, K ) DO 270, I = 1, M B( I, K ) = TEMP*B( I, K ) 270 CONTINUE END IF DO 290, J = 1, K - 1 IF( A( J, K ).NE.ZERO )THEN TEMP = A( J, K ) DO 280, I = 1, M B( I, J ) = B( I, J ) - TEMP*B( I, K ) 280 CONTINUE END IF 290 CONTINUE IF( ALPHA.NE.ONE )THEN DO 300, I = 1, M B( I, K ) = ALPHA*B( I, K ) 300 CONTINUE END IF 310 CONTINUE ELSE DO 360, K = 1, N IF( NOUNIT )THEN TEMP = ONE/A( K, K ) DO 320, I = 1, M B( I, K ) = TEMP*B( I, K ) 320 CONTINUE END IF DO 340, J = K + 1, N IF( A( J, K ).NE.ZERO )THEN TEMP = A( J, K ) DO 330, I = 1, M B( I, J ) = B( I, J ) - TEMP*B( I, K ) 330 CONTINUE END IF 340 CONTINUE IF( ALPHA.NE.ONE )THEN DO 350, I = 1, M B( I, K ) = ALPHA*B( I, K ) 350 CONTINUE END IF 360 CONTINUE END IF END IF END IF * RETURN * * End of STRSM . * END SUBROUTINE STRSV ( UPLO, TRANS, DIAG, N, A, LDA, X, INCX ) * ************************************************************************ * * .. Scalar Arguments .. INTEGER INCX, LDA, N CHARACTER*1 DIAG, TRANS, UPLO * .. Array Arguments .. REAL A( LDA, * ), X( * ) * .. * * Purpose * ======= * * STRSV solves one of the systems of equations * * A*x = b, or A'*x = b, * * where b and x are n element vectors and A is an n by n unit, or * non-unit, upper or lower triangular matrix. * * No test for singularity or near-singularity is included in this * routine. Such tests must be performed before calling this routine. * * Parameters * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the matrix is an upper or * lower triangular matrix as follows: * * UPLO = 'U' or 'u' A is an upper triangular matrix. * * UPLO = 'L' or 'l' A is a lower triangular matrix. * * Unchanged on exit. * * TRANS - CHARACTER*1. * On entry, TRANS specifies the equations to be solved as * follows: * * TRANS = 'N' or 'n' A*x = b. * * TRANS = 'T' or 't' A'*x = b. * * TRANS = 'C' or 'c' A'*x = b. * * Unchanged on exit. * * DIAG - CHARACTER*1. * On entry, DIAG specifies whether or not A is unit * triangular as follows: * * DIAG = 'U' or 'u' A is assumed to be unit triangular. * * DIAG = 'N' or 'n' A is not assumed to be unit * triangular. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * A - REAL array of DIMENSION ( LDA, n ). * Before entry with UPLO = 'U' or 'u', the leading n by n * upper triangular part of the array A must contain the upper * triangular matrix and the strictly lower triangular part of * A is not referenced. * Before entry with UPLO = 'L' or 'l', the leading n by n * lower triangular part of the array A must contain the lower * triangular matrix and the strictly upper triangular part of * A is not referenced. * Note that when DIAG = 'U' or 'u', the diagonal elements of * A are not referenced either, but are assumed to be unity. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * max( 1, n ). * Unchanged on exit. * * X - REAL array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element right-hand side vector b. On exit, X is overwritten * with the solution vector x. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * * .. Parameters .. REAL ZERO PARAMETER ( ZERO = 0.0E+0 ) * .. Local Scalars .. REAL TEMP INTEGER I, INFO, IX, J, JX, KX LOGICAL NOUNIT * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. External Subroutines .. EXTERNAL XERBLA * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 IF ( .NOT.LSAME( UPLO , 'U' ).AND. $ .NOT.LSAME( UPLO , 'L' ) )THEN INFO = 1 ELSE IF( .NOT.LSAME( TRANS, 'N' ).AND. $ .NOT.LSAME( TRANS, 'T' ).AND. $ .NOT.LSAME( TRANS, 'C' ) )THEN INFO = 2 ELSE IF( .NOT.LSAME( DIAG , 'U' ).AND. $ .NOT.LSAME( DIAG , 'N' ) )THEN INFO = 3 ELSE IF( N.LT.0 )THEN INFO = 4 ELSE IF( LDA.LT.MAX( 1, N ) )THEN INFO = 6 ELSE IF( INCX.EQ.0 )THEN INFO = 8 END IF IF( INFO.NE.0 )THEN CALL XERBLA( 'STRSV ', INFO ) RETURN END IF * * Quick return if possible. * IF( N.EQ.0 ) $ RETURN * NOUNIT = LSAME( DIAG, 'N' ) * * Set up the start point in X if the increment is not unity. This * will be ( N - 1 )*INCX too small for descending loops. * IF( INCX.LE.0 )THEN KX = 1 - ( N - 1 )*INCX ELSE IF( INCX.NE.1 )THEN KX = 1 END IF * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through A. * IF( LSAME( TRANS, 'N' ) )THEN * * Form x := inv( A )*x. * IF( LSAME( UPLO, 'U' ) )THEN IF( INCX.EQ.1 )THEN DO 20, J = N, 1, -1 IF( X( J ).NE.ZERO )THEN IF( NOUNIT ) $ X( J ) = X( J )/A( J, J ) TEMP = X( J ) DO 10, I = J - 1, 1, -1 X( I ) = X( I ) - TEMP*A( I, J ) 10 CONTINUE END IF 20 CONTINUE ELSE JX = KX + ( N - 1 )*INCX DO 40, J = N, 1, -1 IF( X( JX ).NE.ZERO )THEN IF( NOUNIT ) $ X( JX ) = X( JX )/A( J, J ) TEMP = X( JX ) IX = JX DO 30, I = J - 1, 1, -1 IX = IX - INCX X( IX ) = X( IX ) - TEMP*A( I, J ) 30 CONTINUE END IF JX = JX - INCX 40 CONTINUE END IF ELSE IF( INCX.EQ.1 )THEN DO 60, J = 1, N IF( X( J ).NE.ZERO )THEN IF( NOUNIT ) $ X( J ) = X( J )/A( J, J ) TEMP = X( J ) DO 50, I = J + 1, N X( I ) = X( I ) - TEMP*A( I, J ) 50 CONTINUE END IF 60 CONTINUE ELSE JX = KX DO 80, J = 1, N IF( X( JX ).NE.ZERO )THEN IF( NOUNIT ) $ X( JX ) = X( JX )/A( J, J ) TEMP = X( JX ) IX = JX DO 70, I = J + 1, N IX = IX + INCX X( IX ) = X( IX ) - TEMP*A( I, J ) 70 CONTINUE END IF JX = JX + INCX 80 CONTINUE END IF END IF ELSE * * Form x := inv( A' )*x. * IF( LSAME( UPLO, 'U' ) )THEN IF( INCX.EQ.1 )THEN DO 100, J = 1, N TEMP = X( J ) DO 90, I = 1, J - 1 TEMP = TEMP - A( I, J )*X( I ) 90 CONTINUE IF( NOUNIT ) $ TEMP = TEMP/A( J, J ) X( J ) = TEMP 100 CONTINUE ELSE JX = KX DO 120, J = 1, N TEMP = X( JX ) IX = KX DO 110, I = 1, J - 1 TEMP = TEMP - A( I, J )*X( IX ) IX = IX + INCX 110 CONTINUE IF( NOUNIT ) $ TEMP = TEMP/A( J, J ) X( JX ) = TEMP JX = JX + INCX 120 CONTINUE END IF ELSE IF( INCX.EQ.1 )THEN DO 140, J = N, 1, -1 TEMP = X( J ) DO 130, I = N, J + 1, -1 TEMP = TEMP - A( I, J )*X( I ) 130 CONTINUE IF( NOUNIT ) $ TEMP = TEMP/A( J, J ) X( J ) = TEMP 140 CONTINUE ELSE KX = KX + ( N - 1 )*INCX JX = KX DO 160, J = N, 1, -1 TEMP = X( JX ) IX = KX DO 150, I = N, J + 1, -1 TEMP = TEMP - A( I, J )*X( IX ) IX = IX - INCX 150 CONTINUE IF( NOUNIT ) $ TEMP = TEMP/A( J, J ) X( JX ) = TEMP JX = JX - INCX 160 CONTINUE END IF END IF END IF * RETURN * * End of STRSV . * END SUBROUTINE DSYRK ( UPLO, TRANS, N, K, ALPHA, A, LDA, $ BETA, C, LDC ) * .. Scalar Arguments .. CHARACTER*1 UPLO, TRANS INTEGER N, K, LDA, LDC DOUBLE PRECISION ALPHA, BETA * .. Array Arguments .. DOUBLE PRECISION A( LDA, * ), C( LDC, * ) * .. * * Purpose * ======= * * DSYRK performs one of the symmetric rank k operations * * C := alpha*A*A' + beta*C, * * or * * C := alpha*A'*A + beta*C, * * where alpha and beta are scalars, C is an n by n symmetric matrix * and A is an n by k matrix in the first case and a k by n matrix * in the second case. * * Parameters * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the array C is to be referenced as * follows: * * UPLO = 'U' or 'u' Only the upper triangular part of C * is to be referenced. * * UPLO = 'L' or 'l' Only the lower triangular part of C * is to be referenced. * * Unchanged on exit. * * TRANS - CHARACTER*1. * On entry, TRANS specifies the operation to be performed as * follows: * * TRANS = 'N' or 'n' C := alpha*A*A' + beta*C. * * TRANS = 'T' or 't' C := alpha*A'*A + beta*C. * * TRANS = 'C' or 'c' C := alpha*A'*A + beta*C. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix C. N must be * at least zero. * Unchanged on exit. * * K - INTEGER. * On entry with TRANS = 'N' or 'n', K specifies the number * of columns of the matrix A, and on entry with * TRANS = 'T' or 't' or 'C' or 'c', K specifies the number * of rows of the matrix A. K must be at least zero. * Unchanged on exit. * * ALPHA - DOUBLE PRECISION. * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * A - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is * k when TRANS = 'N' or 'n', and is n otherwise. * Before entry with TRANS = 'N' or 'n', the leading n by k * part of the array A must contain the matrix A, otherwise * the leading k by n part of the array A must contain the * matrix A. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. When TRANS = 'N' or 'n' * then LDA must be at least max( 1, n ), otherwise LDA must * be at least max( 1, k ). * Unchanged on exit. * * BETA - DOUBLE PRECISION. * On entry, BETA specifies the scalar beta. * Unchanged on exit. * * C - DOUBLE PRECISION array of DIMENSION ( LDC, n ). * Before entry with UPLO = 'U' or 'u', the leading n by n * upper triangular part of the array C must contain the upper * triangular part of the symmetric matrix and the strictly * lower triangular part of C is not referenced. On exit, the * upper triangular part of the array C is overwritten by the * upper triangular part of the updated matrix. * Before entry with UPLO = 'L' or 'l', the leading n by n * lower triangular part of the array C must contain the lower * triangular part of the symmetric matrix and the strictly * upper triangular part of C is not referenced. On exit, the * lower triangular part of the array C is overwritten by the * lower triangular part of the updated matrix. * * LDC - INTEGER. * On entry, LDC specifies the first dimension of C as declared * in the calling (sub) program. LDC must be at least * max( 1, n ). * Unchanged on exit. * * * Level 3 Blas routine. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. External Subroutines .. EXTERNAL XERBLA * .. Intrinsic Functions .. INTRINSIC MAX * .. Local Scalars .. LOGICAL UPPER INTEGER I, INFO, J, L, NROWA DOUBLE PRECISION TEMP * .. Parameters .. DOUBLE PRECISION ONE , ZERO PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) * .. * .. Executable Statements .. * * Test the input parameters. * IF( LSAME( TRANS, 'N' ) )THEN NROWA = N ELSE NROWA = K END IF UPPER = LSAME( UPLO, 'U' ) * INFO = 0 IF( ( .NOT.UPPER ).AND. $ ( .NOT.LSAME( UPLO , 'L' ) ) )THEN INFO = 1 ELSE IF( ( .NOT.LSAME( TRANS, 'N' ) ).AND. $ ( .NOT.LSAME( TRANS, 'T' ) ).AND. $ ( .NOT.LSAME( TRANS, 'C' ) ) )THEN INFO = 2 ELSE IF( N .LT.0 )THEN INFO = 3 ELSE IF( K .LT.0 )THEN INFO = 4 ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN INFO = 7 ELSE IF( LDC.LT.MAX( 1, N ) )THEN INFO = 10 END IF IF( INFO.NE.0 )THEN CALL XERBLA( 'DSYRK ', INFO ) RETURN END IF * * Quick return if possible. * IF( ( N.EQ.0 ).OR. $ ( ( ( ALPHA.EQ.ZERO ).OR.( K.EQ.0 ) ).AND.( BETA.EQ.ONE ) ) ) $ RETURN * * And when alpha.eq.zero. * IF( ALPHA.EQ.ZERO )THEN IF( UPPER )THEN IF( BETA.EQ.ZERO )THEN DO 20, J = 1, N DO 10, I = 1, J C( I, J ) = ZERO 10 CONTINUE 20 CONTINUE ELSE DO 40, J = 1, N DO 30, I = 1, J C( I, J ) = BETA*C( I, J ) 30 CONTINUE 40 CONTINUE END IF ELSE IF( BETA.EQ.ZERO )THEN DO 60, J = 1, N DO 50, I = J, N C( I, J ) = ZERO 50 CONTINUE 60 CONTINUE ELSE DO 80, J = 1, N DO 70, I = J, N C( I, J ) = BETA*C( I, J ) 70 CONTINUE 80 CONTINUE END IF END IF RETURN END IF * * Start the operations. * IF( LSAME( TRANS, 'N' ) )THEN * * Form C := alpha*A*A' + beta*C. * IF( UPPER )THEN DO 130, J = 1, N IF( BETA.EQ.ZERO )THEN DO 90, I = 1, J C( I, J ) = ZERO 90 CONTINUE ELSE IF( BETA.NE.ONE )THEN DO 100, I = 1, J C( I, J ) = BETA*C( I, J ) 100 CONTINUE END IF DO 120, L = 1, K IF( A( J, L ).NE.ZERO )THEN TEMP = ALPHA*A( J, L ) DO 110, I = 1, J C( I, J ) = C( I, J ) + TEMP*A( I, L ) 110 CONTINUE END IF 120 CONTINUE 130 CONTINUE ELSE DO 180, J = 1, N IF( BETA.EQ.ZERO )THEN DO 140, I = J, N C( I, J ) = ZERO 140 CONTINUE ELSE IF( BETA.NE.ONE )THEN DO 150, I = J, N C( I, J ) = BETA*C( I, J ) 150 CONTINUE END IF DO 170, L = 1, K IF( A( J, L ).NE.ZERO )THEN TEMP = ALPHA*A( J, L ) DO 160, I = J, N C( I, J ) = C( I, J ) + TEMP*A( I, L ) 160 CONTINUE END IF 170 CONTINUE 180 CONTINUE END IF ELSE * * Form C := alpha*A'*A + beta*C. * IF( UPPER )THEN DO 210, J = 1, N DO 200, I = 1, J TEMP = ZERO DO 190, L = 1, K TEMP = TEMP + A( L, I )*A( L, J ) 190 CONTINUE IF( BETA.EQ.ZERO )THEN C( I, J ) = ALPHA*TEMP ELSE C( I, J ) = ALPHA*TEMP + BETA*C( I, J ) END IF 200 CONTINUE 210 CONTINUE ELSE DO 240, J = 1, N DO 230, I = J, N TEMP = ZERO DO 220, L = 1, K TEMP = TEMP + A( L, I )*A( L, J ) 220 CONTINUE IF( BETA.EQ.ZERO )THEN C( I, J ) = ALPHA*TEMP ELSE C( I, J ) = ALPHA*TEMP + BETA*C( I, J ) END IF 230 CONTINUE 240 CONTINUE END IF END IF * RETURN * * End of DSYRK . * END SUBROUTINE SSYRK ( UPLO, TRANS, N, K, ALPHA, A, LDA, $ BETA, C, LDC ) * .. Scalar Arguments .. CHARACTER*1 UPLO, TRANS INTEGER N, K, LDA, LDC REAL ALPHA, BETA * .. Array Arguments .. REAL A( LDA, * ), C( LDC, * ) * .. * * Purpose * ======= * * SSYRK performs one of the symmetric rank k operations * * C := alpha*A*A' + beta*C, * * or * * C := alpha*A'*A + beta*C, * * where alpha and beta are scalars, C is an n by n symmetric matrix * and A is an n by k matrix in the first case and a k by n matrix * in the second case. * * Parameters * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the array C is to be referenced as * follows: * * UPLO = 'U' or 'u' Only the upper triangular part of C * is to be referenced. * * UPLO = 'L' or 'l' Only the lower triangular part of C * is to be referenced. * * Unchanged on exit. * * TRANS - CHARACTER*1. * On entry, TRANS specifies the operation to be performed as * follows: * * TRANS = 'N' or 'n' C := alpha*A*A' + beta*C. * * TRANS = 'T' or 't' C := alpha*A'*A + beta*C. * * TRANS = 'C' or 'c' C := alpha*A'*A + beta*C. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix C. N must be * at least zero. * Unchanged on exit. * * K - INTEGER. * On entry with TRANS = 'N' or 'n', K specifies the number * of columns of the matrix A, and on entry with * TRANS = 'T' or 't' or 'C' or 'c', K specifies the number * of rows of the matrix A. K must be at least zero. * Unchanged on exit. * * ALPHA - REAL . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * A - REAL array of DIMENSION ( LDA, ka ), where ka is * k when TRANS = 'N' or 'n', and is n otherwise. * Before entry with TRANS = 'N' or 'n', the leading n by k * part of the array A must contain the matrix A, otherwise * the leading k by n part of the array A must contain the * matrix A. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. When TRANS = 'N' or 'n' * then LDA must be at least max( 1, n ), otherwise LDA must * be at least max( 1, k ). * Unchanged on exit. * * BETA - REAL . * On entry, BETA specifies the scalar beta. * Unchanged on exit. * * C - REAL array of DIMENSION ( LDC, n ). * Before entry with UPLO = 'U' or 'u', the leading n by n * upper triangular part of the array C must contain the upper * triangular part of the symmetric matrix and the strictly * lower triangular part of C is not referenced. On exit, the * upper triangular part of the array C is overwritten by the * upper triangular part of the updated matrix. * Before entry with UPLO = 'L' or 'l', the leading n by n * lower triangular part of the array C must contain the lower * triangular part of the symmetric matrix and the strictly * upper triangular part of C is not referenced. On exit, the * lower triangular part of the array C is overwritten by the * lower triangular part of the updated matrix. * * LDC - INTEGER. * On entry, LDC specifies the first dimension of C as declared * in the calling (sub) program. LDC must be at least * max( 1, n ). * Unchanged on exit. * * * Level 3 Blas routine. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. External Subroutines .. EXTERNAL XERBLA * .. Intrinsic Functions .. INTRINSIC MAX * .. Local Scalars .. LOGICAL UPPER INTEGER I, INFO, J, L, NROWA REAL TEMP * .. Parameters .. REAL ONE , ZERO PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) * .. * .. Executable Statements .. * * Test the input parameters. * IF( LSAME( TRANS, 'N' ) )THEN NROWA = N ELSE NROWA = K END IF UPPER = LSAME( UPLO, 'U' ) * INFO = 0 IF( ( .NOT.UPPER ).AND. $ ( .NOT.LSAME( UPLO , 'L' ) ) )THEN INFO = 1 ELSE IF( ( .NOT.LSAME( TRANS, 'N' ) ).AND. $ ( .NOT.LSAME( TRANS, 'T' ) ).AND. $ ( .NOT.LSAME( TRANS, 'C' ) ) )THEN INFO = 2 ELSE IF( N .LT.0 )THEN INFO = 3 ELSE IF( K .LT.0 )THEN INFO = 4 ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN INFO = 7 ELSE IF( LDC.LT.MAX( 1, N ) )THEN INFO = 10 END IF IF( INFO.NE.0 )THEN CALL XERBLA( 'SSYRK ', INFO ) RETURN END IF * * Quick return if possible. * IF( ( N.EQ.0 ).OR. $ ( ( ( ALPHA.EQ.ZERO ).OR.( K.EQ.0 ) ).AND.( BETA.EQ.ONE ) ) ) $ RETURN * * And when alpha.eq.zero. * IF( ALPHA.EQ.ZERO )THEN IF( UPPER )THEN IF( BETA.EQ.ZERO )THEN DO 20, J = 1, N DO 10, I = 1, J C( I, J ) = ZERO 10 CONTINUE 20 CONTINUE ELSE DO 40, J = 1, N DO 30, I = 1, J C( I, J ) = BETA*C( I, J ) 30 CONTINUE 40 CONTINUE END IF ELSE IF( BETA.EQ.ZERO )THEN DO 60, J = 1, N DO 50, I = J, N C( I, J ) = ZERO 50 CONTINUE 60 CONTINUE ELSE DO 80, J = 1, N DO 70, I = J, N C( I, J ) = BETA*C( I, J ) 70 CONTINUE 80 CONTINUE END IF END IF RETURN END IF * * Start the operations. * IF( LSAME( TRANS, 'N' ) )THEN * * Form C := alpha*A*A' + beta*C. * IF( UPPER )THEN DO 130, J = 1, N IF( BETA.EQ.ZERO )THEN DO 90, I = 1, J C( I, J ) = ZERO 90 CONTINUE ELSE IF( BETA.NE.ONE )THEN DO 100, I = 1, J C( I, J ) = BETA*C( I, J ) 100 CONTINUE END IF DO 120, L = 1, K IF( A( J, L ).NE.ZERO )THEN TEMP = ALPHA*A( J, L ) DO 110, I = 1, J C( I, J ) = C( I, J ) + TEMP*A( I, L ) 110 CONTINUE END IF 120 CONTINUE 130 CONTINUE ELSE DO 180, J = 1, N IF( BETA.EQ.ZERO )THEN DO 140, I = J, N C( I, J ) = ZERO 140 CONTINUE ELSE IF( BETA.NE.ONE )THEN DO 150, I = J, N C( I, J ) = BETA*C( I, J ) 150 CONTINUE END IF DO 170, L = 1, K IF( A( J, L ).NE.ZERO )THEN TEMP = ALPHA*A( J, L ) DO 160, I = J, N C( I, J ) = C( I, J ) + TEMP*A( I, L ) 160 CONTINUE END IF 170 CONTINUE 180 CONTINUE END IF ELSE * * Form C := alpha*A'*A + beta*C. * IF( UPPER )THEN DO 210, J = 1, N DO 200, I = 1, J TEMP = ZERO DO 190, L = 1, K TEMP = TEMP + A( L, I )*A( L, J ) 190 CONTINUE IF( BETA.EQ.ZERO )THEN C( I, J ) = ALPHA*TEMP ELSE C( I, J ) = ALPHA*TEMP + BETA*C( I, J ) END IF 200 CONTINUE 210 CONTINUE ELSE DO 240, J = 1, N DO 230, I = J, N TEMP = ZERO DO 220, L = 1, K TEMP = TEMP + A( L, I )*A( L, J ) 220 CONTINUE IF( BETA.EQ.ZERO )THEN C( I, J ) = ALPHA*TEMP ELSE C( I, J ) = ALPHA*TEMP + BETA*C( I, J ) END IF 230 CONTINUE 240 CONTINUE END IF END IF * RETURN * * End of SSYRK . * END DOUBLE PRECISION FUNCTION DASUM(N,DX,INCX) * .. Scalar Arguments .. INTEGER INCX,N * .. * .. Array Arguments .. DOUBLE PRECISION DX(*) * .. * * Purpose * ======= * * takes the sum of the absolute values. * jack dongarra, linpack, 3/11/78. * modified 3/93 to return if incx .le. 0. * modified 12/3/93, array(1) declarations changed to array(*) * * * .. Local Scalars .. DOUBLE PRECISION DTEMP INTEGER I,M,MP1,NINCX * .. * .. Intrinsic Functions .. INTRINSIC DABS,MOD * .. DASUM = 0.0d0 DTEMP = 0.0d0 IF (N.LE.0 .OR. INCX.LE.0) RETURN IF (INCX.EQ.1) GO TO 20 * * code for increment not equal to 1 * NINCX = N*INCX DO 10 I = 1,NINCX,INCX DTEMP = DTEMP + DABS(DX(I)) 10 CONTINUE DASUM = DTEMP RETURN * * code for increment equal to 1 * * * clean-up loop * 20 M = MOD(N,6) IF (M.EQ.0) GO TO 40 DO 30 I = 1,M DTEMP = DTEMP + DABS(DX(I)) 30 CONTINUE IF (N.LT.6) GO TO 60 40 MP1 = M + 1 DO 50 I = MP1,N,6 DTEMP = DTEMP + DABS(DX(I)) + DABS(DX(I+1)) + DABS(DX(I+2)) + + DABS(DX(I+3)) + DABS(DX(I+4)) + DABS(DX(I+5)) 50 CONTINUE 60 DASUM = DTEMP RETURN END REAL FUNCTION SASUM(N,SX,INCX) * .. Scalar Arguments .. INTEGER INCX,N * .. * .. Array Arguments .. REAL SX(*) * .. * * Purpose * ======= * * takes the sum of the absolute values. * uses unrolled loops for increment equal to one. * jack dongarra, linpack, 3/11/78. * modified 3/93 to return if incx .le. 0. * modified 12/3/93, array(1) declarations changed to array(*) * * * .. Local Scalars .. REAL STEMP INTEGER I,M,MP1,NINCX * .. * .. Intrinsic Functions .. INTRINSIC ABS,MOD * .. SASUM = 0.0e0 STEMP = 0.0e0 IF (N.LE.0 .OR. INCX.LE.0) RETURN IF (INCX.EQ.1) GO TO 20 * * code for increment not equal to 1 * NINCX = N*INCX DO 10 I = 1,NINCX,INCX STEMP = STEMP + ABS(SX(I)) 10 CONTINUE SASUM = STEMP RETURN * * code for increment equal to 1 * * * clean-up loop * 20 M = MOD(N,6) IF (M.EQ.0) GO TO 40 DO 30 I = 1,M STEMP = STEMP + ABS(SX(I)) 30 CONTINUE IF (N.LT.6) GO TO 60 40 MP1 = M + 1 DO 50 I = MP1,N,6 STEMP = STEMP + ABS(SX(I)) + ABS(SX(I+1)) + ABS(SX(I+2)) + + ABS(SX(I+3)) + ABS(SX(I+4)) + ABS(SX(I+5)) 50 CONTINUE 60 SASUM = STEMP RETURN END SUBROUTINE DTRMV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX) * .. Scalar Arguments .. INTEGER INCX,LDA,N CHARACTER DIAG,TRANS,UPLO * .. * .. Array Arguments .. DOUBLE PRECISION A(LDA,*),X(*) * .. * * Purpose * ======= * * DTRMV performs one of the matrix-vector operations * * x := A*x, or x := A'*x, * * where x is an n element vector and A is an n by n unit, or non-unit, * upper or lower triangular matrix. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the matrix is an upper or * lower triangular matrix as follows: * * UPLO = 'U' or 'u' A is an upper triangular matrix. * * UPLO = 'L' or 'l' A is a lower triangular matrix. * * Unchanged on exit. * * TRANS - CHARACTER*1. * On entry, TRANS specifies the operation to be performed as * follows: * * TRANS = 'N' or 'n' x := A*x. * * TRANS = 'T' or 't' x := A'*x. * * TRANS = 'C' or 'c' x := A'*x. * * Unchanged on exit. * * DIAG - CHARACTER*1. * On entry, DIAG specifies whether or not A is unit * triangular as follows: * * DIAG = 'U' or 'u' A is assumed to be unit triangular. * * DIAG = 'N' or 'n' A is not assumed to be unit * triangular. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). * Before entry with UPLO = 'U' or 'u', the leading n by n * upper triangular part of the array A must contain the upper * triangular matrix and the strictly lower triangular part of * A is not referenced. * Before entry with UPLO = 'L' or 'l', the leading n by n * lower triangular part of the array A must contain the lower * triangular matrix and the strictly upper triangular part of * A is not referenced. * Note that when DIAG = 'U' or 'u', the diagonal elements of * A are not referenced either, but are assumed to be unity. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * max( 1, n ). * Unchanged on exit. * * X - DOUBLE PRECISION array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element vector x. On exit, X is overwritten with the * tranformed vector x. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * * .. Parameters .. DOUBLE PRECISION ZERO PARAMETER (ZERO=0.0D+0) * .. * .. Local Scalars .. DOUBLE PRECISION TEMP INTEGER I,INFO,IX,J,JX,KX LOGICAL NOUNIT * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. + .NOT.LSAME(TRANS,'C')) THEN INFO = 2 ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN INFO = 3 ELSE IF (N.LT.0) THEN INFO = 4 ELSE IF (LDA.LT.MAX(1,N)) THEN INFO = 6 ELSE IF (INCX.EQ.0) THEN INFO = 8 END IF IF (INFO.NE.0) THEN CALL XERBLA('DTRMV ',INFO) RETURN END IF * * Quick return if possible. * IF (N.EQ.0) RETURN * NOUNIT = LSAME(DIAG,'N') * * Set up the start point in X if the increment is not unity. This * will be ( N - 1 )*INCX too small for descending loops. * IF (INCX.LE.0) THEN KX = 1 - (N-1)*INCX ELSE IF (INCX.NE.1) THEN KX = 1 END IF * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through A. * IF (LSAME(TRANS,'N')) THEN * * Form x := A*x. * IF (LSAME(UPLO,'U')) THEN IF (INCX.EQ.1) THEN DO 20 J = 1,N IF (X(J).NE.ZERO) THEN TEMP = X(J) DO 10 I = 1,J - 1 X(I) = X(I) + TEMP*A(I,J) 10 CONTINUE IF (NOUNIT) X(J) = X(J)*A(J,J) END IF 20 CONTINUE ELSE JX = KX DO 40 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = X(JX) IX = KX DO 30 I = 1,J - 1 X(IX) = X(IX) + TEMP*A(I,J) IX = IX + INCX 30 CONTINUE IF (NOUNIT) X(JX) = X(JX)*A(J,J) END IF JX = JX + INCX 40 CONTINUE END IF ELSE IF (INCX.EQ.1) THEN DO 60 J = N,1,-1 IF (X(J).NE.ZERO) THEN TEMP = X(J) DO 50 I = N,J + 1,-1 X(I) = X(I) + TEMP*A(I,J) 50 CONTINUE IF (NOUNIT) X(J) = X(J)*A(J,J) END IF 60 CONTINUE ELSE KX = KX + (N-1)*INCX JX = KX DO 80 J = N,1,-1 IF (X(JX).NE.ZERO) THEN TEMP = X(JX) IX = KX DO 70 I = N,J + 1,-1 X(IX) = X(IX) + TEMP*A(I,J) IX = IX - INCX 70 CONTINUE IF (NOUNIT) X(JX) = X(JX)*A(J,J) END IF JX = JX - INCX 80 CONTINUE END IF END IF ELSE * * Form x := A'*x. * IF (LSAME(UPLO,'U')) THEN IF (INCX.EQ.1) THEN DO 100 J = N,1,-1 TEMP = X(J) IF (NOUNIT) TEMP = TEMP*A(J,J) DO 90 I = J - 1,1,-1 TEMP = TEMP + A(I,J)*X(I) 90 CONTINUE X(J) = TEMP 100 CONTINUE ELSE JX = KX + (N-1)*INCX DO 120 J = N,1,-1 TEMP = X(JX) IX = JX IF (NOUNIT) TEMP = TEMP*A(J,J) DO 110 I = J - 1,1,-1 IX = IX - INCX TEMP = TEMP + A(I,J)*X(IX) 110 CONTINUE X(JX) = TEMP JX = JX - INCX 120 CONTINUE END IF ELSE IF (INCX.EQ.1) THEN DO 140 J = 1,N TEMP = X(J) IF (NOUNIT) TEMP = TEMP*A(J,J) DO 130 I = J + 1,N TEMP = TEMP + A(I,J)*X(I) 130 CONTINUE X(J) = TEMP 140 CONTINUE ELSE JX = KX DO 160 J = 1,N TEMP = X(JX) IX = JX IF (NOUNIT) TEMP = TEMP*A(J,J) DO 150 I = J + 1,N IX = IX + INCX TEMP = TEMP + A(I,J)*X(IX) 150 CONTINUE X(JX) = TEMP JX = JX + INCX 160 CONTINUE END IF END IF END IF * RETURN * * End of DTRMV . * END SUBROUTINE STRMV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX) * .. Scalar Arguments .. INTEGER INCX,LDA,N CHARACTER DIAG,TRANS,UPLO * .. * .. Array Arguments .. REAL A(LDA,*),X(*) * .. * * Purpose * ======= * * STRMV performs one of the matrix-vector operations * * x := A*x, or x := A'*x, * * where x is an n element vector and A is an n by n unit, or non-unit, * upper or lower triangular matrix. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the matrix is an upper or * lower triangular matrix as follows: * * UPLO = 'U' or 'u' A is an upper triangular matrix. * * UPLO = 'L' or 'l' A is a lower triangular matrix. * * Unchanged on exit. * * TRANS - CHARACTER*1. * On entry, TRANS specifies the operation to be performed as * follows: * * TRANS = 'N' or 'n' x := A*x. * * TRANS = 'T' or 't' x := A'*x. * * TRANS = 'C' or 'c' x := A'*x. * * Unchanged on exit. * * DIAG - CHARACTER*1. * On entry, DIAG specifies whether or not A is unit * triangular as follows: * * DIAG = 'U' or 'u' A is assumed to be unit triangular. * * DIAG = 'N' or 'n' A is not assumed to be unit * triangular. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * A - REAL array of DIMENSION ( LDA, n ). * Before entry with UPLO = 'U' or 'u', the leading n by n * upper triangular part of the array A must contain the upper * triangular matrix and the strictly lower triangular part of * A is not referenced. * Before entry with UPLO = 'L' or 'l', the leading n by n * lower triangular part of the array A must contain the lower * triangular matrix and the strictly upper triangular part of * A is not referenced. * Note that when DIAG = 'U' or 'u', the diagonal elements of * A are not referenced either, but are assumed to be unity. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * max( 1, n ). * Unchanged on exit. * * X - REAL array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element vector x. On exit, X is overwritten with the * tranformed vector x. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * * .. Parameters .. REAL ZERO PARAMETER (ZERO=0.0E+0) * .. * .. Local Scalars .. REAL TEMP INTEGER I,INFO,IX,J,JX,KX LOGICAL NOUNIT * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. + .NOT.LSAME(TRANS,'C')) THEN INFO = 2 ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN INFO = 3 ELSE IF (N.LT.0) THEN INFO = 4 ELSE IF (LDA.LT.MAX(1,N)) THEN INFO = 6 ELSE IF (INCX.EQ.0) THEN INFO = 8 END IF IF (INFO.NE.0) THEN CALL XERBLA('STRMV ',INFO) RETURN END IF * * Quick return if possible. * IF (N.EQ.0) RETURN * NOUNIT = LSAME(DIAG,'N') * * Set up the start point in X if the increment is not unity. This * will be ( N - 1 )*INCX too small for descending loops. * IF (INCX.LE.0) THEN KX = 1 - (N-1)*INCX ELSE IF (INCX.NE.1) THEN KX = 1 END IF * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through A. * IF (LSAME(TRANS,'N')) THEN * * Form x := A*x. * IF (LSAME(UPLO,'U')) THEN IF (INCX.EQ.1) THEN DO 20 J = 1,N IF (X(J).NE.ZERO) THEN TEMP = X(J) DO 10 I = 1,J - 1 X(I) = X(I) + TEMP*A(I,J) 10 CONTINUE IF (NOUNIT) X(J) = X(J)*A(J,J) END IF 20 CONTINUE ELSE JX = KX DO 40 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = X(JX) IX = KX DO 30 I = 1,J - 1 X(IX) = X(IX) + TEMP*A(I,J) IX = IX + INCX 30 CONTINUE IF (NOUNIT) X(JX) = X(JX)*A(J,J) END IF JX = JX + INCX 40 CONTINUE END IF ELSE IF (INCX.EQ.1) THEN DO 60 J = N,1,-1 IF (X(J).NE.ZERO) THEN TEMP = X(J) DO 50 I = N,J + 1,-1 X(I) = X(I) + TEMP*A(I,J) 50 CONTINUE IF (NOUNIT) X(J) = X(J)*A(J,J) END IF 60 CONTINUE ELSE KX = KX + (N-1)*INCX JX = KX DO 80 J = N,1,-1 IF (X(JX).NE.ZERO) THEN TEMP = X(JX) IX = KX DO 70 I = N,J + 1,-1 X(IX) = X(IX) + TEMP*A(I,J) IX = IX - INCX 70 CONTINUE IF (NOUNIT) X(JX) = X(JX)*A(J,J) END IF JX = JX - INCX 80 CONTINUE END IF END IF ELSE * * Form x := A'*x. * IF (LSAME(UPLO,'U')) THEN IF (INCX.EQ.1) THEN DO 100 J = N,1,-1 TEMP = X(J) IF (NOUNIT) TEMP = TEMP*A(J,J) DO 90 I = J - 1,1,-1 TEMP = TEMP + A(I,J)*X(I) 90 CONTINUE X(J) = TEMP 100 CONTINUE ELSE JX = KX + (N-1)*INCX DO 120 J = N,1,-1 TEMP = X(JX) IX = JX IF (NOUNIT) TEMP = TEMP*A(J,J) DO 110 I = J - 1,1,-1 IX = IX - INCX TEMP = TEMP + A(I,J)*X(IX) 110 CONTINUE X(JX) = TEMP JX = JX - INCX 120 CONTINUE END IF ELSE IF (INCX.EQ.1) THEN DO 140 J = 1,N TEMP = X(J) IF (NOUNIT) TEMP = TEMP*A(J,J) DO 130 I = J + 1,N TEMP = TEMP + A(I,J)*X(I) 130 CONTINUE X(J) = TEMP 140 CONTINUE ELSE JX = KX DO 160 J = 1,N TEMP = X(JX) IX = JX IF (NOUNIT) TEMP = TEMP*A(J,J) DO 150 I = J + 1,N IX = IX + INCX TEMP = TEMP + A(I,J)*X(IX) 150 CONTINUE X(JX) = TEMP JX = JX + INCX 160 CONTINUE END IF END IF END IF * RETURN * * End of STRMV . * END SUBROUTINE DGER(M,N,ALPHA,X,INCX,Y,INCY,A,LDA) * .. Scalar Arguments .. DOUBLE PRECISION ALPHA INTEGER INCX,INCY,LDA,M,N * .. * .. Array Arguments .. DOUBLE PRECISION A(LDA,*),X(*),Y(*) * .. * * Purpose * ======= * * DGER performs the rank 1 operation * * A := alpha*x*y' + A, * * where alpha is a scalar, x is an m element vector, y is an n element * vector and A is an m by n matrix. * * Arguments * ========== * * M - INTEGER. * On entry, M specifies the number of rows of the matrix A. * M must be at least zero. * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the number of columns of the matrix A. * N must be at least zero. * Unchanged on exit. * * ALPHA - DOUBLE PRECISION. * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * X - DOUBLE PRECISION array of dimension at least * ( 1 + ( m - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the m * element vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * Y - DOUBLE PRECISION array of dimension at least * ( 1 + ( n - 1 )*abs( INCY ) ). * Before entry, the incremented array Y must contain the n * element vector y. * Unchanged on exit. * * INCY - INTEGER. * On entry, INCY specifies the increment for the elements of * Y. INCY must not be zero. * Unchanged on exit. * * A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). * Before entry, the leading m by n part of the array A must * contain the matrix of coefficients. On exit, A is * overwritten by the updated matrix. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * max( 1, m ). * Unchanged on exit. * * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * * .. Parameters .. DOUBLE PRECISION ZERO PARAMETER (ZERO=0.0D+0) * .. * .. Local Scalars .. DOUBLE PRECISION TEMP INTEGER I,INFO,IX,J,JY,KX * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * * Test the input parameters. * INFO = 0 IF (M.LT.0) THEN INFO = 1 ELSE IF (N.LT.0) THEN INFO = 2 ELSE IF (INCX.EQ.0) THEN INFO = 5 ELSE IF (INCY.EQ.0) THEN INFO = 7 ELSE IF (LDA.LT.MAX(1,M)) THEN INFO = 9 END IF IF (INFO.NE.0) THEN CALL XERBLA('DGER ',INFO) RETURN END IF * * Quick return if possible. * IF ((M.EQ.0) .OR. (N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through A. * IF (INCY.GT.0) THEN JY = 1 ELSE JY = 1 - (N-1)*INCY END IF IF (INCX.EQ.1) THEN DO 20 J = 1,N IF (Y(JY).NE.ZERO) THEN TEMP = ALPHA*Y(JY) DO 10 I = 1,M A(I,J) = A(I,J) + X(I)*TEMP 10 CONTINUE END IF JY = JY + INCY 20 CONTINUE ELSE IF (INCX.GT.0) THEN KX = 1 ELSE KX = 1 - (M-1)*INCX END IF DO 40 J = 1,N IF (Y(JY).NE.ZERO) THEN TEMP = ALPHA*Y(JY) IX = KX DO 30 I = 1,M A(I,J) = A(I,J) + X(IX)*TEMP IX = IX + INCX 30 CONTINUE END IF JY = JY + INCY 40 CONTINUE END IF * RETURN * * End of DGER . * END SUBROUTINE SGER(M,N,ALPHA,X,INCX,Y,INCY,A,LDA) * .. Scalar Arguments .. REAL ALPHA INTEGER INCX,INCY,LDA,M,N * .. * .. Array Arguments .. REAL A(LDA,*),X(*),Y(*) * .. * * Purpose * ======= * * SGER performs the rank 1 operation * * A := alpha*x*y' + A, * * where alpha is a scalar, x is an m element vector, y is an n element * vector and A is an m by n matrix. * * Arguments * ========== * * M - INTEGER. * On entry, M specifies the number of rows of the matrix A. * M must be at least zero. * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the number of columns of the matrix A. * N must be at least zero. * Unchanged on exit. * * ALPHA - REAL . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * X - REAL array of dimension at least * ( 1 + ( m - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the m * element vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * Y - REAL array of dimension at least * ( 1 + ( n - 1 )*abs( INCY ) ). * Before entry, the incremented array Y must contain the n * element vector y. * Unchanged on exit. * * INCY - INTEGER. * On entry, INCY specifies the increment for the elements of * Y. INCY must not be zero. * Unchanged on exit. * * A - REAL array of DIMENSION ( LDA, n ). * Before entry, the leading m by n part of the array A must * contain the matrix of coefficients. On exit, A is * overwritten by the updated matrix. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * max( 1, m ). * Unchanged on exit. * * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * * .. Parameters .. REAL ZERO PARAMETER (ZERO=0.0E+0) * .. * .. Local Scalars .. REAL TEMP INTEGER I,INFO,IX,J,JY,KX * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * * Test the input parameters. * INFO = 0 IF (M.LT.0) THEN INFO = 1 ELSE IF (N.LT.0) THEN INFO = 2 ELSE IF (INCX.EQ.0) THEN INFO = 5 ELSE IF (INCY.EQ.0) THEN INFO = 7 ELSE IF (LDA.LT.MAX(1,M)) THEN INFO = 9 END IF IF (INFO.NE.0) THEN CALL XERBLA('SGER ',INFO) RETURN END IF * * Quick return if possible. * IF ((M.EQ.0) .OR. (N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through A. * IF (INCY.GT.0) THEN JY = 1 ELSE JY = 1 - (N-1)*INCY END IF IF (INCX.EQ.1) THEN DO 20 J = 1,N IF (Y(JY).NE.ZERO) THEN TEMP = ALPHA*Y(JY) DO 10 I = 1,M A(I,J) = A(I,J) + X(I)*TEMP 10 CONTINUE END IF JY = JY + INCY 20 CONTINUE ELSE IF (INCX.GT.0) THEN KX = 1 ELSE KX = 1 - (M-1)*INCX END IF DO 40 J = 1,N IF (Y(JY).NE.ZERO) THEN TEMP = ALPHA*Y(JY) IX = KX DO 30 I = 1,M A(I,J) = A(I,J) + X(IX)*TEMP IX = IX + INCX 30 CONTINUE END IF JY = JY + INCY 40 CONTINUE END IF * RETURN * * End of SGER . * END SUBROUTINE ZSCAL(N,ZA,ZX,INCX) * .. Scalar Arguments .. DOUBLE COMPLEX ZA INTEGER INCX,N * .. * .. Array Arguments .. DOUBLE COMPLEX ZX(*) * .. * * Purpose * ======= * * scales a vector by a constant. * jack dongarra, 3/11/78. * modified 3/93 to return if incx .le. 0. * modified 12/3/93, array(1) declarations changed to array(*) * * * .. Local Scalars .. INTEGER I,IX * .. IF (N.LE.0 .OR. INCX.LE.0) RETURN IF (INCX.EQ.1) GO TO 20 * * code for increment not equal to 1 * IX = 1 DO 10 I = 1,N ZX(IX) = ZA*ZX(IX) IX = IX + INCX 10 CONTINUE RETURN * * code for increment equal to 1 * 20 DO 30 I = 1,N ZX(I) = ZA*ZX(I) 30 CONTINUE RETURN END INTEGER FUNCTION IZAMAX(N,ZX,INCX) * .. Scalar Arguments .. INTEGER INCX,N * .. * .. Array Arguments .. DOUBLE COMPLEX ZX(*) * .. * * Purpose * ======= * * finds the index of element having max. absolute value. * jack dongarra, 1/15/85. * modified 3/93 to return if incx .le. 0. * modified 12/3/93, array(1) declarations changed to array(*) * * * .. Local Scalars .. DOUBLE PRECISION SMAX INTEGER I,IX * .. * .. External Functions .. DOUBLE PRECISION DCABS1 EXTERNAL DCABS1 * .. IZAMAX = 0 IF (N.LT.1 .OR. INCX.LE.0) RETURN IZAMAX = 1 IF (N.EQ.1) RETURN IF (INCX.EQ.1) GO TO 20 * * code for increment not equal to 1 * IX = 1 SMAX = DCABS1(ZX(1)) IX = IX + INCX DO 10 I = 2,N IF (DCABS1(ZX(IX)).LE.SMAX) GO TO 5 IZAMAX = I SMAX = DCABS1(ZX(IX)) 5 IX = IX + INCX 10 CONTINUE RETURN * * code for increment equal to 1 * 20 SMAX = DCABS1(ZX(1)) DO 30 I = 2,N IF (DCABS1(ZX(I)).LE.SMAX) GO TO 30 IZAMAX = I SMAX = DCABS1(ZX(I)) 30 CONTINUE RETURN END SUBROUTINE DSYR(UPLO,N,ALPHA,X,INCX,A,LDA) * .. Scalar Arguments .. DOUBLE PRECISION ALPHA INTEGER INCX,LDA,N CHARACTER UPLO * .. * .. Array Arguments .. DOUBLE PRECISION A(LDA,*),X(*) * .. * * Purpose * ======= * * DSYR performs the symmetric rank 1 operation * * A := alpha*x*x' + A, * * where alpha is a real scalar, x is an n element vector and A is an * n by n symmetric matrix. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the array A is to be referenced as * follows: * * UPLO = 'U' or 'u' Only the upper triangular part of A * is to be referenced. * * UPLO = 'L' or 'l' Only the lower triangular part of A * is to be referenced. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * ALPHA - DOUBLE PRECISION. * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * X - DOUBLE PRECISION array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). * Before entry with UPLO = 'U' or 'u', the leading n by n * upper triangular part of the array A must contain the upper * triangular part of the symmetric matrix and the strictly * lower triangular part of A is not referenced. On exit, the * upper triangular part of the array A is overwritten by the * upper triangular part of the updated matrix. * Before entry with UPLO = 'L' or 'l', the leading n by n * lower triangular part of the array A must contain the lower * triangular part of the symmetric matrix and the strictly * upper triangular part of A is not referenced. On exit, the * lower triangular part of the array A is overwritten by the * lower triangular part of the updated matrix. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * max( 1, n ). * Unchanged on exit. * * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * * .. Parameters .. DOUBLE PRECISION ZERO PARAMETER (ZERO=0.0D+0) * .. * .. Local Scalars .. DOUBLE PRECISION TEMP INTEGER I,INFO,IX,J,JX,KX * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (N.LT.0) THEN INFO = 2 ELSE IF (INCX.EQ.0) THEN INFO = 5 ELSE IF (LDA.LT.MAX(1,N)) THEN INFO = 7 END IF IF (INFO.NE.0) THEN CALL XERBLA('DSYR ',INFO) RETURN END IF * * Quick return if possible. * IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN * * Set the start point in X if the increment is not unity. * IF (INCX.LE.0) THEN KX = 1 - (N-1)*INCX ELSE IF (INCX.NE.1) THEN KX = 1 END IF * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through the triangular part * of A. * IF (LSAME(UPLO,'U')) THEN * * Form A when A is stored in upper triangle. * IF (INCX.EQ.1) THEN DO 20 J = 1,N IF (X(J).NE.ZERO) THEN TEMP = ALPHA*X(J) DO 10 I = 1,J A(I,J) = A(I,J) + X(I)*TEMP 10 CONTINUE END IF 20 CONTINUE ELSE JX = KX DO 40 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = ALPHA*X(JX) IX = KX DO 30 I = 1,J A(I,J) = A(I,J) + X(IX)*TEMP IX = IX + INCX 30 CONTINUE END IF JX = JX + INCX 40 CONTINUE END IF ELSE * * Form A when A is stored in lower triangle. * IF (INCX.EQ.1) THEN DO 60 J = 1,N IF (X(J).NE.ZERO) THEN TEMP = ALPHA*X(J) DO 50 I = J,N A(I,J) = A(I,J) + X(I)*TEMP 50 CONTINUE END IF 60 CONTINUE ELSE JX = KX DO 80 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = ALPHA*X(JX) IX = JX DO 70 I = J,N A(I,J) = A(I,J) + X(IX)*TEMP IX = IX + INCX 70 CONTINUE END IF JX = JX + INCX 80 CONTINUE END IF END IF * RETURN * * End of DSYR . * END SUBROUTINE ZGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC) * .. Scalar Arguments .. DOUBLE COMPLEX ALPHA,BETA INTEGER K,LDA,LDB,LDC,M,N CHARACTER TRANSA,TRANSB * .. * .. Array Arguments .. DOUBLE COMPLEX A(LDA,*),B(LDB,*),C(LDC,*) * .. * * Purpose * ======= * * ZGEMM performs one of the matrix-matrix operations * * C := alpha*op( A )*op( B ) + beta*C, * * where op( X ) is one of * * op( X ) = X or op( X ) = X' or op( X ) = conjg( X' ), * * alpha and beta are scalars, and A, B and C are matrices, with op( A ) * an m by k matrix, op( B ) a k by n matrix and C an m by n matrix. * * Arguments * ========== * * TRANSA - CHARACTER*1. * On entry, TRANSA specifies the form of op( A ) to be used in * the matrix multiplication as follows: * * TRANSA = 'N' or 'n', op( A ) = A. * * TRANSA = 'T' or 't', op( A ) = A'. * * TRANSA = 'C' or 'c', op( A ) = conjg( A' ). * * Unchanged on exit. * * TRANSB - CHARACTER*1. * On entry, TRANSB specifies the form of op( B ) to be used in * the matrix multiplication as follows: * * TRANSB = 'N' or 'n', op( B ) = B. * * TRANSB = 'T' or 't', op( B ) = B'. * * TRANSB = 'C' or 'c', op( B ) = conjg( B' ). * * Unchanged on exit. * * M - INTEGER. * On entry, M specifies the number of rows of the matrix * op( A ) and of the matrix C. M must be at least zero. * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the number of columns of the matrix * op( B ) and the number of columns of the matrix C. N must be * at least zero. * Unchanged on exit. * * K - INTEGER. * On entry, K specifies the number of columns of the matrix * op( A ) and the number of rows of the matrix op( B ). K must * be at least zero. * Unchanged on exit. * * ALPHA - COMPLEX*16 . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * A - COMPLEX*16 array of DIMENSION ( LDA, ka ), where ka is * k when TRANSA = 'N' or 'n', and is m otherwise. * Before entry with TRANSA = 'N' or 'n', the leading m by k * part of the array A must contain the matrix A, otherwise * the leading k by m part of the array A must contain the * matrix A. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. When TRANSA = 'N' or 'n' then * LDA must be at least max( 1, m ), otherwise LDA must be at * least max( 1, k ). * Unchanged on exit. * * B - COMPLEX*16 array of DIMENSION ( LDB, kb ), where kb is * n when TRANSB = 'N' or 'n', and is k otherwise. * Before entry with TRANSB = 'N' or 'n', the leading k by n * part of the array B must contain the matrix B, otherwise * the leading n by k part of the array B must contain the * matrix B. * Unchanged on exit. * * LDB - INTEGER. * On entry, LDB specifies the first dimension of B as declared * in the calling (sub) program. When TRANSB = 'N' or 'n' then * LDB must be at least max( 1, k ), otherwise LDB must be at * least max( 1, n ). * Unchanged on exit. * * BETA - COMPLEX*16 . * On entry, BETA specifies the scalar beta. When BETA is * supplied as zero then C need not be set on input. * Unchanged on exit. * * C - COMPLEX*16 array of DIMENSION ( LDC, n ). * Before entry, the leading m by n part of the array C must * contain the matrix C, except when beta is zero, in which * case C need not be set on entry. * On exit, the array C is overwritten by the m by n matrix * ( alpha*op( A )*op( B ) + beta*C ). * * LDC - INTEGER. * On entry, LDC specifies the first dimension of C as declared * in the calling (sub) program. LDC must be at least * max( 1, m ). * Unchanged on exit. * * * Level 3 Blas routine. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC DCONJG,MAX * .. * .. Local Scalars .. DOUBLE COMPLEX TEMP INTEGER I,INFO,J,L,NCOLA,NROWA,NROWB LOGICAL CONJA,CONJB,NOTA,NOTB * .. * .. Parameters .. DOUBLE COMPLEX ONE PARAMETER (ONE= (1.0D+0,0.0D+0)) DOUBLE COMPLEX ZERO PARAMETER (ZERO= (0.0D+0,0.0D+0)) * .. * * Set NOTA and NOTB as true if A and B respectively are not * conjugated or transposed, set CONJA and CONJB as true if A and * B respectively are to be transposed but not conjugated and set * NROWA, NCOLA and NROWB as the number of rows and columns of A * and the number of rows of B respectively. * NOTA = LSAME(TRANSA,'N') NOTB = LSAME(TRANSB,'N') CONJA = LSAME(TRANSA,'C') CONJB = LSAME(TRANSB,'C') IF (NOTA) THEN NROWA = M NCOLA = K ELSE NROWA = K NCOLA = M END IF IF (NOTB) THEN NROWB = K ELSE NROWB = N END IF * * Test the input parameters. * INFO = 0 IF ((.NOT.NOTA) .AND. (.NOT.CONJA) .AND. + (.NOT.LSAME(TRANSA,'T'))) THEN INFO = 1 ELSE IF ((.NOT.NOTB) .AND. (.NOT.CONJB) .AND. + (.NOT.LSAME(TRANSB,'T'))) THEN INFO = 2 ELSE IF (M.LT.0) THEN INFO = 3 ELSE IF (N.LT.0) THEN INFO = 4 ELSE IF (K.LT.0) THEN INFO = 5 ELSE IF (LDA.LT.MAX(1,NROWA)) THEN INFO = 8 ELSE IF (LDB.LT.MAX(1,NROWB)) THEN INFO = 10 ELSE IF (LDC.LT.MAX(1,M)) THEN INFO = 13 END IF IF (INFO.NE.0) THEN CALL XERBLA('ZGEMM ',INFO) RETURN END IF * * Quick return if possible. * IF ((M.EQ.0) .OR. (N.EQ.0) .OR. + (((ALPHA.EQ.ZERO).OR. (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN * * And when alpha.eq.zero. * IF (ALPHA.EQ.ZERO) THEN IF (BETA.EQ.ZERO) THEN DO 20 J = 1,N DO 10 I = 1,M C(I,J) = ZERO 10 CONTINUE 20 CONTINUE ELSE DO 40 J = 1,N DO 30 I = 1,M C(I,J) = BETA*C(I,J) 30 CONTINUE 40 CONTINUE END IF RETURN END IF * * Start the operations. * IF (NOTB) THEN IF (NOTA) THEN * * Form C := alpha*A*B + beta*C. * DO 90 J = 1,N IF (BETA.EQ.ZERO) THEN DO 50 I = 1,M C(I,J) = ZERO 50 CONTINUE ELSE IF (BETA.NE.ONE) THEN DO 60 I = 1,M C(I,J) = BETA*C(I,J) 60 CONTINUE END IF DO 80 L = 1,K IF (B(L,J).NE.ZERO) THEN TEMP = ALPHA*B(L,J) DO 70 I = 1,M C(I,J) = C(I,J) + TEMP*A(I,L) 70 CONTINUE END IF 80 CONTINUE 90 CONTINUE ELSE IF (CONJA) THEN * * Form C := alpha*conjg( A' )*B + beta*C. * DO 120 J = 1,N DO 110 I = 1,M TEMP = ZERO DO 100 L = 1,K TEMP = TEMP + DCONJG(A(L,I))*B(L,J) 100 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = ALPHA*TEMP ELSE C(I,J) = ALPHA*TEMP + BETA*C(I,J) END IF 110 CONTINUE 120 CONTINUE ELSE * * Form C := alpha*A'*B + beta*C * DO 150 J = 1,N DO 140 I = 1,M TEMP = ZERO DO 130 L = 1,K TEMP = TEMP + A(L,I)*B(L,J) 130 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = ALPHA*TEMP ELSE C(I,J) = ALPHA*TEMP + BETA*C(I,J) END IF 140 CONTINUE 150 CONTINUE END IF ELSE IF (NOTA) THEN IF (CONJB) THEN * * Form C := alpha*A*conjg( B' ) + beta*C. * DO 200 J = 1,N IF (BETA.EQ.ZERO) THEN DO 160 I = 1,M C(I,J) = ZERO 160 CONTINUE ELSE IF (BETA.NE.ONE) THEN DO 170 I = 1,M C(I,J) = BETA*C(I,J) 170 CONTINUE END IF DO 190 L = 1,K IF (B(J,L).NE.ZERO) THEN TEMP = ALPHA*DCONJG(B(J,L)) DO 180 I = 1,M C(I,J) = C(I,J) + TEMP*A(I,L) 180 CONTINUE END IF 190 CONTINUE 200 CONTINUE ELSE * * Form C := alpha*A*B' + beta*C * DO 250 J = 1,N IF (BETA.EQ.ZERO) THEN DO 210 I = 1,M C(I,J) = ZERO 210 CONTINUE ELSE IF (BETA.NE.ONE) THEN DO 220 I = 1,M C(I,J) = BETA*C(I,J) 220 CONTINUE END IF DO 240 L = 1,K IF (B(J,L).NE.ZERO) THEN TEMP = ALPHA*B(J,L) DO 230 I = 1,M C(I,J) = C(I,J) + TEMP*A(I,L) 230 CONTINUE END IF 240 CONTINUE 250 CONTINUE END IF ELSE IF (CONJA) THEN IF (CONJB) THEN * * Form C := alpha*conjg( A' )*conjg( B' ) + beta*C. * DO 280 J = 1,N DO 270 I = 1,M TEMP = ZERO DO 260 L = 1,K TEMP = TEMP + DCONJG(A(L,I))*DCONJG(B(J,L)) 260 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = ALPHA*TEMP ELSE C(I,J) = ALPHA*TEMP + BETA*C(I,J) END IF 270 CONTINUE 280 CONTINUE ELSE * * Form C := alpha*conjg( A' )*B' + beta*C * DO 310 J = 1,N DO 300 I = 1,M TEMP = ZERO DO 290 L = 1,K TEMP = TEMP + DCONJG(A(L,I))*B(J,L) 290 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = ALPHA*TEMP ELSE C(I,J) = ALPHA*TEMP + BETA*C(I,J) END IF 300 CONTINUE 310 CONTINUE END IF ELSE IF (CONJB) THEN * * Form C := alpha*A'*conjg( B' ) + beta*C * DO 340 J = 1,N DO 330 I = 1,M TEMP = ZERO DO 320 L = 1,K TEMP = TEMP + A(L,I)*DCONJG(B(J,L)) 320 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = ALPHA*TEMP ELSE C(I,J) = ALPHA*TEMP + BETA*C(I,J) END IF 330 CONTINUE 340 CONTINUE ELSE * * Form C := alpha*A'*B' + beta*C * DO 370 J = 1,N DO 360 I = 1,M TEMP = ZERO DO 350 L = 1,K TEMP = TEMP + A(L,I)*B(J,L) 350 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = ALPHA*TEMP ELSE C(I,J) = ALPHA*TEMP + BETA*C(I,J) END IF 360 CONTINUE 370 CONTINUE END IF END IF * RETURN * * End of ZGEMM . * END SUBROUTINE SSYR(UPLO,N,ALPHA,X,INCX,A,LDA) * .. Scalar Arguments .. REAL ALPHA INTEGER INCX,LDA,N CHARACTER UPLO * .. * .. Array Arguments .. REAL A(LDA,*),X(*) * .. * * Purpose * ======= * * SSYR performs the symmetric rank 1 operation * * A := alpha*x*x' + A, * * where alpha is a real scalar, x is an n element vector and A is an * n by n symmetric matrix. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the array A is to be referenced as * follows: * * UPLO = 'U' or 'u' Only the upper triangular part of A * is to be referenced. * * UPLO = 'L' or 'l' Only the lower triangular part of A * is to be referenced. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * ALPHA - REAL . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * X - REAL array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * A - REAL array of DIMENSION ( LDA, n ). * Before entry with UPLO = 'U' or 'u', the leading n by n * upper triangular part of the array A must contain the upper * triangular part of the symmetric matrix and the strictly * lower triangular part of A is not referenced. On exit, the * upper triangular part of the array A is overwritten by the * upper triangular part of the updated matrix. * Before entry with UPLO = 'L' or 'l', the leading n by n * lower triangular part of the array A must contain the lower * triangular part of the symmetric matrix and the strictly * upper triangular part of A is not referenced. On exit, the * lower triangular part of the array A is overwritten by the * lower triangular part of the updated matrix. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * max( 1, n ). * Unchanged on exit. * * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * * .. Parameters .. REAL ZERO PARAMETER (ZERO=0.0E+0) * .. * .. Local Scalars .. REAL TEMP INTEGER I,INFO,IX,J,JX,KX * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (N.LT.0) THEN INFO = 2 ELSE IF (INCX.EQ.0) THEN INFO = 5 ELSE IF (LDA.LT.MAX(1,N)) THEN INFO = 7 END IF IF (INFO.NE.0) THEN CALL XERBLA('SSYR ',INFO) RETURN END IF * * Quick return if possible. * IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN * * Set the start point in X if the increment is not unity. * IF (INCX.LE.0) THEN KX = 1 - (N-1)*INCX ELSE IF (INCX.NE.1) THEN KX = 1 END IF * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through the triangular part * of A. * IF (LSAME(UPLO,'U')) THEN * * Form A when A is stored in upper triangle. * IF (INCX.EQ.1) THEN DO 20 J = 1,N IF (X(J).NE.ZERO) THEN TEMP = ALPHA*X(J) DO 10 I = 1,J A(I,J) = A(I,J) + X(I)*TEMP 10 CONTINUE END IF 20 CONTINUE ELSE JX = KX DO 40 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = ALPHA*X(JX) IX = KX DO 30 I = 1,J A(I,J) = A(I,J) + X(IX)*TEMP IX = IX + INCX 30 CONTINUE END IF JX = JX + INCX 40 CONTINUE END IF ELSE * * Form A when A is stored in lower triangle. * IF (INCX.EQ.1) THEN DO 60 J = 1,N IF (X(J).NE.ZERO) THEN TEMP = ALPHA*X(J) DO 50 I = J,N A(I,J) = A(I,J) + X(I)*TEMP 50 CONTINUE END IF 60 CONTINUE ELSE JX = KX DO 80 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = ALPHA*X(JX) IX = JX DO 70 I = J,N A(I,J) = A(I,J) + X(IX)*TEMP IX = IX + INCX 70 CONTINUE END IF JX = JX + INCX 80 CONTINUE END IF END IF * RETURN * * End of SSYR . * END SUBROUTINE ZHER(UPLO,N,ALPHA,X,INCX,A,LDA) * .. Scalar Arguments .. DOUBLE PRECISION ALPHA INTEGER INCX,LDA,N CHARACTER UPLO * .. * .. Array Arguments .. DOUBLE COMPLEX A(LDA,*),X(*) * .. * * Purpose * ======= * * ZHER performs the hermitian rank 1 operation * * A := alpha*x*conjg( x' ) + A, * * where alpha is a real scalar, x is an n element vector and A is an * n by n hermitian matrix. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the array A is to be referenced as * follows: * * UPLO = 'U' or 'u' Only the upper triangular part of A * is to be referenced. * * UPLO = 'L' or 'l' Only the lower triangular part of A * is to be referenced. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * ALPHA - DOUBLE PRECISION. * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * X - COMPLEX*16 array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * A - COMPLEX*16 array of DIMENSION ( LDA, n ). * Before entry with UPLO = 'U' or 'u', the leading n by n * upper triangular part of the array A must contain the upper * triangular part of the hermitian matrix and the strictly * lower triangular part of A is not referenced. On exit, the * upper triangular part of the array A is overwritten by the * upper triangular part of the updated matrix. * Before entry with UPLO = 'L' or 'l', the leading n by n * lower triangular part of the array A must contain the lower * triangular part of the hermitian matrix and the strictly * upper triangular part of A is not referenced. On exit, the * lower triangular part of the array A is overwritten by the * lower triangular part of the updated matrix. * Note that the imaginary parts of the diagonal elements need * not be set, they are assumed to be zero, and on exit they * are set to zero. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * max( 1, n ). * Unchanged on exit. * * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * * .. Parameters .. DOUBLE COMPLEX ZERO PARAMETER (ZERO= (0.0D+0,0.0D+0)) * .. * .. Local Scalars .. DOUBLE COMPLEX TEMP INTEGER I,INFO,IX,J,JX,KX * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC DBLE,DCONJG,MAX * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (N.LT.0) THEN INFO = 2 ELSE IF (INCX.EQ.0) THEN INFO = 5 ELSE IF (LDA.LT.MAX(1,N)) THEN INFO = 7 END IF IF (INFO.NE.0) THEN CALL XERBLA('ZHER ',INFO) RETURN END IF * * Quick return if possible. * IF ((N.EQ.0) .OR. (ALPHA.EQ.DBLE(ZERO))) RETURN * * Set the start point in X if the increment is not unity. * IF (INCX.LE.0) THEN KX = 1 - (N-1)*INCX ELSE IF (INCX.NE.1) THEN KX = 1 END IF * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through the triangular part * of A. * IF (LSAME(UPLO,'U')) THEN * * Form A when A is stored in upper triangle. * IF (INCX.EQ.1) THEN DO 20 J = 1,N IF (X(J).NE.ZERO) THEN TEMP = ALPHA*DCONJG(X(J)) DO 10 I = 1,J - 1 A(I,J) = A(I,J) + X(I)*TEMP 10 CONTINUE A(J,J) = DBLE(A(J,J)) + DBLE(X(J)*TEMP) ELSE A(J,J) = DBLE(A(J,J)) END IF 20 CONTINUE ELSE JX = KX DO 40 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = ALPHA*DCONJG(X(JX)) IX = KX DO 30 I = 1,J - 1 A(I,J) = A(I,J) + X(IX)*TEMP IX = IX + INCX 30 CONTINUE A(J,J) = DBLE(A(J,J)) + DBLE(X(JX)*TEMP) ELSE A(J,J) = DBLE(A(J,J)) END IF JX = JX + INCX 40 CONTINUE END IF ELSE * * Form A when A is stored in lower triangle. * IF (INCX.EQ.1) THEN DO 60 J = 1,N IF (X(J).NE.ZERO) THEN TEMP = ALPHA*DCONJG(X(J)) A(J,J) = DBLE(A(J,J)) + DBLE(TEMP*X(J)) DO 50 I = J + 1,N A(I,J) = A(I,J) + X(I)*TEMP 50 CONTINUE ELSE A(J,J) = DBLE(A(J,J)) END IF 60 CONTINUE ELSE JX = KX DO 80 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = ALPHA*DCONJG(X(JX)) A(J,J) = DBLE(A(J,J)) + DBLE(TEMP*X(JX)) IX = JX DO 70 I = J + 1,N IX = IX + INCX A(I,J) = A(I,J) + X(IX)*TEMP 70 CONTINUE ELSE A(J,J) = DBLE(A(J,J)) END IF JX = JX + INCX 80 CONTINUE END IF END IF * RETURN * * End of ZHER . * END SUBROUTINE ZSWAP(N,ZX,INCX,ZY,INCY) * .. Scalar Arguments .. INTEGER INCX,INCY,N * .. * .. Array Arguments .. DOUBLE COMPLEX ZX(*),ZY(*) * .. * * Purpose * ======= * * interchanges two vectors. * jack dongarra, 3/11/78. * modified 12/3/93, array(1) declarations changed to array(*) * * * .. Local Scalars .. DOUBLE COMPLEX ZTEMP INTEGER I,IX,IY * .. IF (N.LE.0) RETURN IF (INCX.EQ.1 .AND. INCY.EQ.1) GO TO 20 * * code for unequal increments or equal increments not equal * to 1 * IX = 1 IY = 1 IF (INCX.LT.0) IX = (-N+1)*INCX + 1 IF (INCY.LT.0) IY = (-N+1)*INCY + 1 DO 10 I = 1,N ZTEMP = ZX(IX) ZX(IX) = ZY(IY) ZY(IY) = ZTEMP IX = IX + INCX IY = IY + INCY 10 CONTINUE RETURN * * code for both increments equal to 1 20 DO 30 I = 1,N ZTEMP = ZX(I) ZX(I) = ZY(I) ZY(I) = ZTEMP 30 CONTINUE RETURN END SUBROUTINE ZTRSM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB) * .. Scalar Arguments .. DOUBLE COMPLEX ALPHA INTEGER LDA,LDB,M,N CHARACTER DIAG,SIDE,TRANSA,UPLO * .. * .. Array Arguments .. DOUBLE COMPLEX A(LDA,*),B(LDB,*) * .. * * Purpose * ======= * * ZTRSM solves one of the matrix equations * * op( A )*X = alpha*B, or X*op( A ) = alpha*B, * * where alpha is a scalar, X and B are m by n matrices, A is a unit, or * non-unit, upper or lower triangular matrix and op( A ) is one of * * op( A ) = A or op( A ) = A' or op( A ) = conjg( A' ). * * The matrix X is overwritten on B. * * Arguments * ========== * * SIDE - CHARACTER*1. * On entry, SIDE specifies whether op( A ) appears on the left * or right of X as follows: * * SIDE = 'L' or 'l' op( A )*X = alpha*B. * * SIDE = 'R' or 'r' X*op( A ) = alpha*B. * * Unchanged on exit. * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the matrix A is an upper or * lower triangular matrix as follows: * * UPLO = 'U' or 'u' A is an upper triangular matrix. * * UPLO = 'L' or 'l' A is a lower triangular matrix. * * Unchanged on exit. * * TRANSA - CHARACTER*1. * On entry, TRANSA specifies the form of op( A ) to be used in * the matrix multiplication as follows: * * TRANSA = 'N' or 'n' op( A ) = A. * * TRANSA = 'T' or 't' op( A ) = A'. * * TRANSA = 'C' or 'c' op( A ) = conjg( A' ). * * Unchanged on exit. * * DIAG - CHARACTER*1. * On entry, DIAG specifies whether or not A is unit triangular * as follows: * * DIAG = 'U' or 'u' A is assumed to be unit triangular. * * DIAG = 'N' or 'n' A is not assumed to be unit * triangular. * * Unchanged on exit. * * M - INTEGER. * On entry, M specifies the number of rows of B. M must be at * least zero. * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the number of columns of B. N must be * at least zero. * Unchanged on exit. * * ALPHA - COMPLEX*16 . * On entry, ALPHA specifies the scalar alpha. When alpha is * zero then A is not referenced and B need not be set before * entry. * Unchanged on exit. * * A - COMPLEX*16 array of DIMENSION ( LDA, k ), where k is m * when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'. * Before entry with UPLO = 'U' or 'u', the leading k by k * upper triangular part of the array A must contain the upper * triangular matrix and the strictly lower triangular part of * A is not referenced. * Before entry with UPLO = 'L' or 'l', the leading k by k * lower triangular part of the array A must contain the lower * triangular matrix and the strictly upper triangular part of * A is not referenced. * Note that when DIAG = 'U' or 'u', the diagonal elements of * A are not referenced either, but are assumed to be unity. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. When SIDE = 'L' or 'l' then * LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' * then LDA must be at least max( 1, n ). * Unchanged on exit. * * B - COMPLEX*16 array of DIMENSION ( LDB, n ). * Before entry, the leading m by n part of the array B must * contain the right-hand side matrix B, and on exit is * overwritten by the solution matrix X. * * LDB - INTEGER. * On entry, LDB specifies the first dimension of B as declared * in the calling (sub) program. LDB must be at least * max( 1, m ). * Unchanged on exit. * * * Level 3 Blas routine. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC DCONJG,MAX * .. * .. Local Scalars .. DOUBLE COMPLEX TEMP INTEGER I,INFO,J,K,NROWA LOGICAL LSIDE,NOCONJ,NOUNIT,UPPER * .. * .. Parameters .. DOUBLE COMPLEX ONE PARAMETER (ONE= (1.0D+0,0.0D+0)) DOUBLE COMPLEX ZERO PARAMETER (ZERO= (0.0D+0,0.0D+0)) * .. * * Test the input parameters. * LSIDE = LSAME(SIDE,'L') IF (LSIDE) THEN NROWA = M ELSE NROWA = N END IF NOCONJ = LSAME(TRANSA,'T') NOUNIT = LSAME(DIAG,'N') UPPER = LSAME(UPLO,'U') * INFO = 0 IF ((.NOT.LSIDE) .AND. (.NOT.LSAME(SIDE,'R'))) THEN INFO = 1 ELSE IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN INFO = 2 ELSE IF ((.NOT.LSAME(TRANSA,'N')) .AND. + (.NOT.LSAME(TRANSA,'T')) .AND. + (.NOT.LSAME(TRANSA,'C'))) THEN INFO = 3 ELSE IF ((.NOT.LSAME(DIAG,'U')) .AND. (.NOT.LSAME(DIAG,'N'))) THEN INFO = 4 ELSE IF (M.LT.0) THEN INFO = 5 ELSE IF (N.LT.0) THEN INFO = 6 ELSE IF (LDA.LT.MAX(1,NROWA)) THEN INFO = 9 ELSE IF (LDB.LT.MAX(1,M)) THEN INFO = 11 END IF IF (INFO.NE.0) THEN CALL XERBLA('ZTRSM ',INFO) RETURN END IF * * Quick return if possible. * IF (N.EQ.0) RETURN * * And when alpha.eq.zero. * IF (ALPHA.EQ.ZERO) THEN DO 20 J = 1,N DO 10 I = 1,M B(I,J) = ZERO 10 CONTINUE 20 CONTINUE RETURN END IF * * Start the operations. * IF (LSIDE) THEN IF (LSAME(TRANSA,'N')) THEN * * Form B := alpha*inv( A )*B. * IF (UPPER) THEN DO 60 J = 1,N IF (ALPHA.NE.ONE) THEN DO 30 I = 1,M B(I,J) = ALPHA*B(I,J) 30 CONTINUE END IF DO 50 K = M,1,-1 IF (B(K,J).NE.ZERO) THEN IF (NOUNIT) B(K,J) = B(K,J)/A(K,K) DO 40 I = 1,K - 1 B(I,J) = B(I,J) - B(K,J)*A(I,K) 40 CONTINUE END IF 50 CONTINUE 60 CONTINUE ELSE DO 100 J = 1,N IF (ALPHA.NE.ONE) THEN DO 70 I = 1,M B(I,J) = ALPHA*B(I,J) 70 CONTINUE END IF DO 90 K = 1,M IF (B(K,J).NE.ZERO) THEN IF (NOUNIT) B(K,J) = B(K,J)/A(K,K) DO 80 I = K + 1,M B(I,J) = B(I,J) - B(K,J)*A(I,K) 80 CONTINUE END IF 90 CONTINUE 100 CONTINUE END IF ELSE * * Form B := alpha*inv( A' )*B * or B := alpha*inv( conjg( A' ) )*B. * IF (UPPER) THEN DO 140 J = 1,N DO 130 I = 1,M TEMP = ALPHA*B(I,J) IF (NOCONJ) THEN DO 110 K = 1,I - 1 TEMP = TEMP - A(K,I)*B(K,J) 110 CONTINUE IF (NOUNIT) TEMP = TEMP/A(I,I) ELSE DO 120 K = 1,I - 1 TEMP = TEMP - DCONJG(A(K,I))*B(K,J) 120 CONTINUE IF (NOUNIT) TEMP = TEMP/DCONJG(A(I,I)) END IF B(I,J) = TEMP 130 CONTINUE 140 CONTINUE ELSE DO 180 J = 1,N DO 170 I = M,1,-1 TEMP = ALPHA*B(I,J) IF (NOCONJ) THEN DO 150 K = I + 1,M TEMP = TEMP - A(K,I)*B(K,J) 150 CONTINUE IF (NOUNIT) TEMP = TEMP/A(I,I) ELSE DO 160 K = I + 1,M TEMP = TEMP - DCONJG(A(K,I))*B(K,J) 160 CONTINUE IF (NOUNIT) TEMP = TEMP/DCONJG(A(I,I)) END IF B(I,J) = TEMP 170 CONTINUE 180 CONTINUE END IF END IF ELSE IF (LSAME(TRANSA,'N')) THEN * * Form B := alpha*B*inv( A ). * IF (UPPER) THEN DO 230 J = 1,N IF (ALPHA.NE.ONE) THEN DO 190 I = 1,M B(I,J) = ALPHA*B(I,J) 190 CONTINUE END IF DO 210 K = 1,J - 1 IF (A(K,J).NE.ZERO) THEN DO 200 I = 1,M B(I,J) = B(I,J) - A(K,J)*B(I,K) 200 CONTINUE END IF 210 CONTINUE IF (NOUNIT) THEN TEMP = ONE/A(J,J) DO 220 I = 1,M B(I,J) = TEMP*B(I,J) 220 CONTINUE END IF 230 CONTINUE ELSE DO 280 J = N,1,-1 IF (ALPHA.NE.ONE) THEN DO 240 I = 1,M B(I,J) = ALPHA*B(I,J) 240 CONTINUE END IF DO 260 K = J + 1,N IF (A(K,J).NE.ZERO) THEN DO 250 I = 1,M B(I,J) = B(I,J) - A(K,J)*B(I,K) 250 CONTINUE END IF 260 CONTINUE IF (NOUNIT) THEN TEMP = ONE/A(J,J) DO 270 I = 1,M B(I,J) = TEMP*B(I,J) 270 CONTINUE END IF 280 CONTINUE END IF ELSE * * Form B := alpha*B*inv( A' ) * or B := alpha*B*inv( conjg( A' ) ). * IF (UPPER) THEN DO 330 K = N,1,-1 IF (NOUNIT) THEN IF (NOCONJ) THEN TEMP = ONE/A(K,K) ELSE TEMP = ONE/DCONJG(A(K,K)) END IF DO 290 I = 1,M B(I,K) = TEMP*B(I,K) 290 CONTINUE END IF DO 310 J = 1,K - 1 IF (A(J,K).NE.ZERO) THEN IF (NOCONJ) THEN TEMP = A(J,K) ELSE TEMP = DCONJG(A(J,K)) END IF DO 300 I = 1,M B(I,J) = B(I,J) - TEMP*B(I,K) 300 CONTINUE END IF 310 CONTINUE IF (ALPHA.NE.ONE) THEN DO 320 I = 1,M B(I,K) = ALPHA*B(I,K) 320 CONTINUE END IF 330 CONTINUE ELSE DO 380 K = 1,N IF (NOUNIT) THEN IF (NOCONJ) THEN TEMP = ONE/A(K,K) ELSE TEMP = ONE/DCONJG(A(K,K)) END IF DO 340 I = 1,M B(I,K) = TEMP*B(I,K) 340 CONTINUE END IF DO 360 J = K + 1,N IF (A(J,K).NE.ZERO) THEN IF (NOCONJ) THEN TEMP = A(J,K) ELSE TEMP = DCONJG(A(J,K)) END IF DO 350 I = 1,M B(I,J) = B(I,J) - TEMP*B(I,K) 350 CONTINUE END IF 360 CONTINUE IF (ALPHA.NE.ONE) THEN DO 370 I = 1,M B(I,K) = ALPHA*B(I,K) 370 CONTINUE END IF 380 CONTINUE END IF END IF END IF * RETURN * * End of ZTRSM . * END DOUBLE COMPLEX FUNCTION ZDOTC(N,ZX,INCX,ZY,INCY) * .. Scalar Arguments .. INTEGER INCX,INCY,N * .. * .. Array Arguments .. DOUBLE COMPLEX ZX(*),ZY(*) * .. * * Purpose * ======= * * ZDOTC forms the dot product of a vector. * * Further Details * =============== * * jack dongarra, 3/11/78. * modified 12/3/93, array(1) declarations changed to array(*) * * .. Local Scalars .. DOUBLE COMPLEX ZTEMP INTEGER I,IX,IY * .. * .. Intrinsic Functions .. INTRINSIC DCONJG * .. ZTEMP = (0.0d0,0.0d0) ZDOTC = (0.0d0,0.0d0) IF (N.LE.0) RETURN IF (INCX.EQ.1 .AND. INCY.EQ.1) GO TO 20 * * code for unequal increments or equal increments * not equal to 1 * IX = 1 IY = 1 IF (INCX.LT.0) IX = (-N+1)*INCX + 1 IF (INCY.LT.0) IY = (-N+1)*INCY + 1 DO 10 I = 1,N ZTEMP = ZTEMP + DCONJG(ZX(IX))*ZY(IY) IX = IX + INCX IY = IY + INCY 10 CONTINUE ZDOTC = ZTEMP RETURN * * code for both increments equal to 1 * 20 DO 30 I = 1,N ZTEMP = ZTEMP + DCONJG(ZX(I))*ZY(I) 30 CONTINUE ZDOTC = ZTEMP RETURN END SUBROUTINE ZGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) * .. Scalar Arguments .. DOUBLE COMPLEX ALPHA,BETA INTEGER INCX,INCY,LDA,M,N CHARACTER TRANS * .. * .. Array Arguments .. DOUBLE COMPLEX A(LDA,*),X(*),Y(*) * .. * * Purpose * ======= * * ZGEMV performs one of the matrix-vector operations * * y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, or * * y := alpha*conjg( A' )*x + beta*y, * * where alpha and beta are scalars, x and y are vectors and A is an * m by n matrix. * * Arguments * ========== * * TRANS - CHARACTER*1. * On entry, TRANS specifies the operation to be performed as * follows: * * TRANS = 'N' or 'n' y := alpha*A*x + beta*y. * * TRANS = 'T' or 't' y := alpha*A'*x + beta*y. * * TRANS = 'C' or 'c' y := alpha*conjg( A' )*x + beta*y. * * Unchanged on exit. * * M - INTEGER. * On entry, M specifies the number of rows of the matrix A. * M must be at least zero. * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the number of columns of the matrix A. * N must be at least zero. * Unchanged on exit. * * ALPHA - COMPLEX*16 . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * A - COMPLEX*16 array of DIMENSION ( LDA, n ). * Before entry, the leading m by n part of the array A must * contain the matrix of coefficients. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * max( 1, m ). * Unchanged on exit. * * X - COMPLEX*16 array of DIMENSION at least * ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' * and at least * ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. * Before entry, the incremented array X must contain the * vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * BETA - COMPLEX*16 . * On entry, BETA specifies the scalar beta. When BETA is * supplied as zero then Y need not be set on input. * Unchanged on exit. * * Y - COMPLEX*16 array of DIMENSION at least * ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' * and at least * ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. * Before entry with BETA non-zero, the incremented array Y * must contain the vector y. On exit, Y is overwritten by the * updated vector y. * * INCY - INTEGER. * On entry, INCY specifies the increment for the elements of * Y. INCY must not be zero. * Unchanged on exit. * * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * * .. Parameters .. DOUBLE COMPLEX ONE PARAMETER (ONE= (1.0D+0,0.0D+0)) DOUBLE COMPLEX ZERO PARAMETER (ZERO= (0.0D+0,0.0D+0)) * .. * .. Local Scalars .. DOUBLE COMPLEX TEMP INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY,LENX,LENY LOGICAL NOCONJ * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC DCONJG,MAX * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. + .NOT.LSAME(TRANS,'C')) THEN INFO = 1 ELSE IF (M.LT.0) THEN INFO = 2 ELSE IF (N.LT.0) THEN INFO = 3 ELSE IF (LDA.LT.MAX(1,M)) THEN INFO = 6 ELSE IF (INCX.EQ.0) THEN INFO = 8 ELSE IF (INCY.EQ.0) THEN INFO = 11 END IF IF (INFO.NE.0) THEN CALL XERBLA('ZGEMV ',INFO) RETURN END IF * * Quick return if possible. * IF ((M.EQ.0) .OR. (N.EQ.0) .OR. + ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN * NOCONJ = LSAME(TRANS,'T') * * Set LENX and LENY, the lengths of the vectors x and y, and set * up the start points in X and Y. * IF (LSAME(TRANS,'N')) THEN LENX = N LENY = M ELSE LENX = M LENY = N END IF IF (INCX.GT.0) THEN KX = 1 ELSE KX = 1 - (LENX-1)*INCX END IF IF (INCY.GT.0) THEN KY = 1 ELSE KY = 1 - (LENY-1)*INCY END IF * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through A. * * First form y := beta*y. * IF (BETA.NE.ONE) THEN IF (INCY.EQ.1) THEN IF (BETA.EQ.ZERO) THEN DO 10 I = 1,LENY Y(I) = ZERO 10 CONTINUE ELSE DO 20 I = 1,LENY Y(I) = BETA*Y(I) 20 CONTINUE END IF ELSE IY = KY IF (BETA.EQ.ZERO) THEN DO 30 I = 1,LENY Y(IY) = ZERO IY = IY + INCY 30 CONTINUE ELSE DO 40 I = 1,LENY Y(IY) = BETA*Y(IY) IY = IY + INCY 40 CONTINUE END IF END IF END IF IF (ALPHA.EQ.ZERO) RETURN IF (LSAME(TRANS,'N')) THEN * * Form y := alpha*A*x + y. * JX = KX IF (INCY.EQ.1) THEN DO 60 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = ALPHA*X(JX) DO 50 I = 1,M Y(I) = Y(I) + TEMP*A(I,J) 50 CONTINUE END IF JX = JX + INCX 60 CONTINUE ELSE DO 80 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = ALPHA*X(JX) IY = KY DO 70 I = 1,M Y(IY) = Y(IY) + TEMP*A(I,J) IY = IY + INCY 70 CONTINUE END IF JX = JX + INCX 80 CONTINUE END IF ELSE * * Form y := alpha*A'*x + y or y := alpha*conjg( A' )*x + y. * JY = KY IF (INCX.EQ.1) THEN DO 110 J = 1,N TEMP = ZERO IF (NOCONJ) THEN DO 90 I = 1,M TEMP = TEMP + A(I,J)*X(I) 90 CONTINUE ELSE DO 100 I = 1,M TEMP = TEMP + DCONJG(A(I,J))*X(I) 100 CONTINUE END IF Y(JY) = Y(JY) + ALPHA*TEMP JY = JY + INCY 110 CONTINUE ELSE DO 140 J = 1,N TEMP = ZERO IX = KX IF (NOCONJ) THEN DO 120 I = 1,M TEMP = TEMP + A(I,J)*X(IX) IX = IX + INCX 120 CONTINUE ELSE DO 130 I = 1,M TEMP = TEMP + DCONJG(A(I,J))*X(IX) IX = IX + INCX 130 CONTINUE END IF Y(JY) = Y(JY) + ALPHA*TEMP JY = JY + INCY 140 CONTINUE END IF END IF * RETURN * * End of ZGEMV . * END SUBROUTINE ZDSCAL(N,DA,ZX,INCX) * .. Scalar Arguments .. DOUBLE PRECISION DA INTEGER INCX,N * .. * .. Array Arguments .. DOUBLE COMPLEX ZX(*) * .. * * Purpose * ======= * * scales a vector by a constant. * jack dongarra, 3/11/78. * modified 3/93 to return if incx .le. 0. * modified 12/3/93, array(1) declarations changed to array(*) * * * .. Local Scalars .. INTEGER I,IX * .. * .. Intrinsic Functions .. INTRINSIC DCMPLX * .. IF (N.LE.0 .OR. INCX.LE.0) RETURN IF (INCX.EQ.1) GO TO 20 * * code for increment not equal to 1 * IX = 1 DO 10 I = 1,N ZX(IX) = DCMPLX(DA,0.0d0)*ZX(IX) IX = IX + INCX 10 CONTINUE RETURN * * code for increment equal to 1 * 20 DO 30 I = 1,N ZX(I) = DCMPLX(DA,0.0d0)*ZX(I) 30 CONTINUE RETURN END DOUBLE PRECISION FUNCTION DCABS1(Z) * .. Scalar Arguments .. DOUBLE COMPLEX Z * .. * .. * Purpose * ======= * * DCABS1 computes absolute value of a double complex number * * .. Intrinsic Functions .. INTRINSIC ABS,DBLE,DIMAG * DCABS1 = ABS(DBLE(Z)) + ABS(DIMAG(Z)) RETURN END SUBROUTINE ZGERU(M,N,ALPHA,X,INCX,Y,INCY,A,LDA) * .. Scalar Arguments .. DOUBLE COMPLEX ALPHA INTEGER INCX,INCY,LDA,M,N * .. * .. Array Arguments .. DOUBLE COMPLEX A(LDA,*),X(*),Y(*) * .. * * Purpose * ======= * * ZGERU performs the rank 1 operation * * A := alpha*x*y' + A, * * where alpha is a scalar, x is an m element vector, y is an n element * vector and A is an m by n matrix. * * Arguments * ========== * * M - INTEGER. * On entry, M specifies the number of rows of the matrix A. * M must be at least zero. * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the number of columns of the matrix A. * N must be at least zero. * Unchanged on exit. * * ALPHA - COMPLEX*16 . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * X - COMPLEX*16 array of dimension at least * ( 1 + ( m - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the m * element vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * Y - COMPLEX*16 array of dimension at least * ( 1 + ( n - 1 )*abs( INCY ) ). * Before entry, the incremented array Y must contain the n * element vector y. * Unchanged on exit. * * INCY - INTEGER. * On entry, INCY specifies the increment for the elements of * Y. INCY must not be zero. * Unchanged on exit. * * A - COMPLEX*16 array of DIMENSION ( LDA, n ). * Before entry, the leading m by n part of the array A must * contain the matrix of coefficients. On exit, A is * overwritten by the updated matrix. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * max( 1, m ). * Unchanged on exit. * * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * * .. Parameters .. DOUBLE COMPLEX ZERO PARAMETER (ZERO= (0.0D+0,0.0D+0)) * .. * .. Local Scalars .. DOUBLE COMPLEX TEMP INTEGER I,INFO,IX,J,JY,KX * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * * Test the input parameters. * INFO = 0 IF (M.LT.0) THEN INFO = 1 ELSE IF (N.LT.0) THEN INFO = 2 ELSE IF (INCX.EQ.0) THEN INFO = 5 ELSE IF (INCY.EQ.0) THEN INFO = 7 ELSE IF (LDA.LT.MAX(1,M)) THEN INFO = 9 END IF IF (INFO.NE.0) THEN CALL XERBLA('ZGERU ',INFO) RETURN END IF * * Quick return if possible. * IF ((M.EQ.0) .OR. (N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through A. * IF (INCY.GT.0) THEN JY = 1 ELSE JY = 1 - (N-1)*INCY END IF IF (INCX.EQ.1) THEN DO 20 J = 1,N IF (Y(JY).NE.ZERO) THEN TEMP = ALPHA*Y(JY) DO 10 I = 1,M A(I,J) = A(I,J) + X(I)*TEMP 10 CONTINUE END IF JY = JY + INCY 20 CONTINUE ELSE IF (INCX.GT.0) THEN KX = 1 ELSE KX = 1 - (M-1)*INCX END IF DO 40 J = 1,N IF (Y(JY).NE.ZERO) THEN TEMP = ALPHA*Y(JY) IX = KX DO 30 I = 1,M A(I,J) = A(I,J) + X(IX)*TEMP IX = IX + INCX 30 CONTINUE END IF JY = JY + INCY 40 CONTINUE END IF * RETURN * * End of ZGERU . * END SUBROUTINE DTRMM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB) * .. Scalar Arguments .. DOUBLE PRECISION ALPHA INTEGER LDA,LDB,M,N CHARACTER DIAG,SIDE,TRANSA,UPLO * .. * .. Array Arguments .. DOUBLE PRECISION A(LDA,*),B(LDB,*) * .. * * Purpose * ======= * * DTRMM performs one of the matrix-matrix operations * * B := alpha*op( A )*B, or B := alpha*B*op( A ), * * where alpha is a scalar, B is an m by n matrix, A is a unit, or * non-unit, upper or lower triangular matrix and op( A ) is one of * * op( A ) = A or op( A ) = A'. * * Arguments * ========== * * SIDE - CHARACTER*1. * On entry, SIDE specifies whether op( A ) multiplies B from * the left or right as follows: * * SIDE = 'L' or 'l' B := alpha*op( A )*B. * * SIDE = 'R' or 'r' B := alpha*B*op( A ). * * Unchanged on exit. * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the matrix A is an upper or * lower triangular matrix as follows: * * UPLO = 'U' or 'u' A is an upper triangular matrix. * * UPLO = 'L' or 'l' A is a lower triangular matrix. * * Unchanged on exit. * * TRANSA - CHARACTER*1. * On entry, TRANSA specifies the form of op( A ) to be used in * the matrix multiplication as follows: * * TRANSA = 'N' or 'n' op( A ) = A. * * TRANSA = 'T' or 't' op( A ) = A'. * * TRANSA = 'C' or 'c' op( A ) = A'. * * Unchanged on exit. * * DIAG - CHARACTER*1. * On entry, DIAG specifies whether or not A is unit triangular * as follows: * * DIAG = 'U' or 'u' A is assumed to be unit triangular. * * DIAG = 'N' or 'n' A is not assumed to be unit * triangular. * * Unchanged on exit. * * M - INTEGER. * On entry, M specifies the number of rows of B. M must be at * least zero. * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the number of columns of B. N must be * at least zero. * Unchanged on exit. * * ALPHA - DOUBLE PRECISION. * On entry, ALPHA specifies the scalar alpha. When alpha is * zero then A is not referenced and B need not be set before * entry. * Unchanged on exit. * * A - DOUBLE PRECISION array of DIMENSION ( LDA, k ), where k is m * when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'. * Before entry with UPLO = 'U' or 'u', the leading k by k * upper triangular part of the array A must contain the upper * triangular matrix and the strictly lower triangular part of * A is not referenced. * Before entry with UPLO = 'L' or 'l', the leading k by k * lower triangular part of the array A must contain the lower * triangular matrix and the strictly upper triangular part of * A is not referenced. * Note that when DIAG = 'U' or 'u', the diagonal elements of * A are not referenced either, but are assumed to be unity. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. When SIDE = 'L' or 'l' then * LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' * then LDA must be at least max( 1, n ). * Unchanged on exit. * * B - DOUBLE PRECISION array of DIMENSION ( LDB, n ). * Before entry, the leading m by n part of the array B must * contain the matrix B, and on exit is overwritten by the * transformed matrix. * * LDB - INTEGER. * On entry, LDB specifies the first dimension of B as declared * in the calling (sub) program. LDB must be at least * max( 1, m ). * Unchanged on exit. * * * Level 3 Blas routine. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Local Scalars .. DOUBLE PRECISION TEMP INTEGER I,INFO,J,K,NROWA LOGICAL LSIDE,NOUNIT,UPPER * .. * .. Parameters .. DOUBLE PRECISION ONE,ZERO PARAMETER (ONE=1.0D+0,ZERO=0.0D+0) * .. * * Test the input parameters. * LSIDE = LSAME(SIDE,'L') IF (LSIDE) THEN NROWA = M ELSE NROWA = N END IF NOUNIT = LSAME(DIAG,'N') UPPER = LSAME(UPLO,'U') * INFO = 0 IF ((.NOT.LSIDE) .AND. (.NOT.LSAME(SIDE,'R'))) THEN INFO = 1 ELSE IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN INFO = 2 ELSE IF ((.NOT.LSAME(TRANSA,'N')) .AND. + (.NOT.LSAME(TRANSA,'T')) .AND. + (.NOT.LSAME(TRANSA,'C'))) THEN INFO = 3 ELSE IF ((.NOT.LSAME(DIAG,'U')) .AND. (.NOT.LSAME(DIAG,'N'))) THEN INFO = 4 ELSE IF (M.LT.0) THEN INFO = 5 ELSE IF (N.LT.0) THEN INFO = 6 ELSE IF (LDA.LT.MAX(1,NROWA)) THEN INFO = 9 ELSE IF (LDB.LT.MAX(1,M)) THEN INFO = 11 END IF IF (INFO.NE.0) THEN CALL XERBLA('DTRMM ',INFO) RETURN END IF * * Quick return if possible. * IF (N.EQ.0) RETURN * * And when alpha.eq.zero. * IF (ALPHA.EQ.ZERO) THEN DO 20 J = 1,N DO 10 I = 1,M B(I,J) = ZERO 10 CONTINUE 20 CONTINUE RETURN END IF * * Start the operations. * IF (LSIDE) THEN IF (LSAME(TRANSA,'N')) THEN * * Form B := alpha*A*B. * IF (UPPER) THEN DO 50 J = 1,N DO 40 K = 1,M IF (B(K,J).NE.ZERO) THEN TEMP = ALPHA*B(K,J) DO 30 I = 1,K - 1 B(I,J) = B(I,J) + TEMP*A(I,K) 30 CONTINUE IF (NOUNIT) TEMP = TEMP*A(K,K) B(K,J) = TEMP END IF 40 CONTINUE 50 CONTINUE ELSE DO 80 J = 1,N DO 70 K = M,1,-1 IF (B(K,J).NE.ZERO) THEN TEMP = ALPHA*B(K,J) B(K,J) = TEMP IF (NOUNIT) B(K,J) = B(K,J)*A(K,K) DO 60 I = K + 1,M B(I,J) = B(I,J) + TEMP*A(I,K) 60 CONTINUE END IF 70 CONTINUE 80 CONTINUE END IF ELSE * * Form B := alpha*A'*B. * IF (UPPER) THEN DO 110 J = 1,N DO 100 I = M,1,-1 TEMP = B(I,J) IF (NOUNIT) TEMP = TEMP*A(I,I) DO 90 K = 1,I - 1 TEMP = TEMP + A(K,I)*B(K,J) 90 CONTINUE B(I,J) = ALPHA*TEMP 100 CONTINUE 110 CONTINUE ELSE DO 140 J = 1,N DO 130 I = 1,M TEMP = B(I,J) IF (NOUNIT) TEMP = TEMP*A(I,I) DO 120 K = I + 1,M TEMP = TEMP + A(K,I)*B(K,J) 120 CONTINUE B(I,J) = ALPHA*TEMP 130 CONTINUE 140 CONTINUE END IF END IF ELSE IF (LSAME(TRANSA,'N')) THEN * * Form B := alpha*B*A. * IF (UPPER) THEN DO 180 J = N,1,-1 TEMP = ALPHA IF (NOUNIT) TEMP = TEMP*A(J,J) DO 150 I = 1,M B(I,J) = TEMP*B(I,J) 150 CONTINUE DO 170 K = 1,J - 1 IF (A(K,J).NE.ZERO) THEN TEMP = ALPHA*A(K,J) DO 160 I = 1,M B(I,J) = B(I,J) + TEMP*B(I,K) 160 CONTINUE END IF 170 CONTINUE 180 CONTINUE ELSE DO 220 J = 1,N TEMP = ALPHA IF (NOUNIT) TEMP = TEMP*A(J,J) DO 190 I = 1,M B(I,J) = TEMP*B(I,J) 190 CONTINUE DO 210 K = J + 1,N IF (A(K,J).NE.ZERO) THEN TEMP = ALPHA*A(K,J) DO 200 I = 1,M B(I,J) = B(I,J) + TEMP*B(I,K) 200 CONTINUE END IF 210 CONTINUE 220 CONTINUE END IF ELSE * * Form B := alpha*B*A'. * IF (UPPER) THEN DO 260 K = 1,N DO 240 J = 1,K - 1 IF (A(J,K).NE.ZERO) THEN TEMP = ALPHA*A(J,K) DO 230 I = 1,M B(I,J) = B(I,J) + TEMP*B(I,K) 230 CONTINUE END IF 240 CONTINUE TEMP = ALPHA IF (NOUNIT) TEMP = TEMP*A(K,K) IF (TEMP.NE.ONE) THEN DO 250 I = 1,M B(I,K) = TEMP*B(I,K) 250 CONTINUE END IF 260 CONTINUE ELSE DO 300 K = N,1,-1 DO 280 J = K + 1,N IF (A(J,K).NE.ZERO) THEN TEMP = ALPHA*A(J,K) DO 270 I = 1,M B(I,J) = B(I,J) + TEMP*B(I,K) 270 CONTINUE END IF 280 CONTINUE TEMP = ALPHA IF (NOUNIT) TEMP = TEMP*A(K,K) IF (TEMP.NE.ONE) THEN DO 290 I = 1,M B(I,K) = TEMP*B(I,K) 290 CONTINUE END IF 300 CONTINUE END IF END IF END IF * RETURN * * End of DTRMM . * END SUBROUTINE DSYMV(UPLO,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) * .. Scalar Arguments .. DOUBLE PRECISION ALPHA,BETA INTEGER INCX,INCY,LDA,N CHARACTER UPLO * .. * .. Array Arguments .. DOUBLE PRECISION A(LDA,*),X(*),Y(*) * .. * * Purpose * ======= * * DSYMV performs the matrix-vector operation * * y := alpha*A*x + beta*y, * * where alpha and beta are scalars, x and y are n element vectors and * A is an n by n symmetric matrix. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the array A is to be referenced as * follows: * * UPLO = 'U' or 'u' Only the upper triangular part of A * is to be referenced. * * UPLO = 'L' or 'l' Only the lower triangular part of A * is to be referenced. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * ALPHA - DOUBLE PRECISION. * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). * Before entry with UPLO = 'U' or 'u', the leading n by n * upper triangular part of the array A must contain the upper * triangular part of the symmetric matrix and the strictly * lower triangular part of A is not referenced. * Before entry with UPLO = 'L' or 'l', the leading n by n * lower triangular part of the array A must contain the lower * triangular part of the symmetric matrix and the strictly * upper triangular part of A is not referenced. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * max( 1, n ). * Unchanged on exit. * * X - DOUBLE PRECISION array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * BETA - DOUBLE PRECISION. * On entry, BETA specifies the scalar beta. When BETA is * supplied as zero then Y need not be set on input. * Unchanged on exit. * * Y - DOUBLE PRECISION array of dimension at least * ( 1 + ( n - 1 )*abs( INCY ) ). * Before entry, the incremented array Y must contain the n * element vector y. On exit, Y is overwritten by the updated * vector y. * * INCY - INTEGER. * On entry, INCY specifies the increment for the elements of * Y. INCY must not be zero. * Unchanged on exit. * * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * * .. Parameters .. DOUBLE PRECISION ONE,ZERO PARAMETER (ONE=1.0D+0,ZERO=0.0D+0) * .. * .. Local Scalars .. DOUBLE PRECISION TEMP1,TEMP2 INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (N.LT.0) THEN INFO = 2 ELSE IF (LDA.LT.MAX(1,N)) THEN INFO = 5 ELSE IF (INCX.EQ.0) THEN INFO = 7 ELSE IF (INCY.EQ.0) THEN INFO = 10 END IF IF (INFO.NE.0) THEN CALL XERBLA('DSYMV ',INFO) RETURN END IF * * Quick return if possible. * IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN * * Set up the start points in X and Y. * IF (INCX.GT.0) THEN KX = 1 ELSE KX = 1 - (N-1)*INCX END IF IF (INCY.GT.0) THEN KY = 1 ELSE KY = 1 - (N-1)*INCY END IF * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through the triangular part * of A. * * First form y := beta*y. * IF (BETA.NE.ONE) THEN IF (INCY.EQ.1) THEN IF (BETA.EQ.ZERO) THEN DO 10 I = 1,N Y(I) = ZERO 10 CONTINUE ELSE DO 20 I = 1,N Y(I) = BETA*Y(I) 20 CONTINUE END IF ELSE IY = KY IF (BETA.EQ.ZERO) THEN DO 30 I = 1,N Y(IY) = ZERO IY = IY + INCY 30 CONTINUE ELSE DO 40 I = 1,N Y(IY) = BETA*Y(IY) IY = IY + INCY 40 CONTINUE END IF END IF END IF IF (ALPHA.EQ.ZERO) RETURN IF (LSAME(UPLO,'U')) THEN * * Form y when A is stored in upper triangle. * IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 60 J = 1,N TEMP1 = ALPHA*X(J) TEMP2 = ZERO DO 50 I = 1,J - 1 Y(I) = Y(I) + TEMP1*A(I,J) TEMP2 = TEMP2 + A(I,J)*X(I) 50 CONTINUE Y(J) = Y(J) + TEMP1*A(J,J) + ALPHA*TEMP2 60 CONTINUE ELSE JX = KX JY = KY DO 80 J = 1,N TEMP1 = ALPHA*X(JX) TEMP2 = ZERO IX = KX IY = KY DO 70 I = 1,J - 1 Y(IY) = Y(IY) + TEMP1*A(I,J) TEMP2 = TEMP2 + A(I,J)*X(IX) IX = IX + INCX IY = IY + INCY 70 CONTINUE Y(JY) = Y(JY) + TEMP1*A(J,J) + ALPHA*TEMP2 JX = JX + INCX JY = JY + INCY 80 CONTINUE END IF ELSE * * Form y when A is stored in lower triangle. * IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 100 J = 1,N TEMP1 = ALPHA*X(J) TEMP2 = ZERO Y(J) = Y(J) + TEMP1*A(J,J) DO 90 I = J + 1,N Y(I) = Y(I) + TEMP1*A(I,J) TEMP2 = TEMP2 + A(I,J)*X(I) 90 CONTINUE Y(J) = Y(J) + ALPHA*TEMP2 100 CONTINUE ELSE JX = KX JY = KY DO 120 J = 1,N TEMP1 = ALPHA*X(JX) TEMP2 = ZERO Y(JY) = Y(JY) + TEMP1*A(J,J) IX = JX IY = JY DO 110 I = J + 1,N IX = IX + INCX IY = IY + INCY Y(IY) = Y(IY) + TEMP1*A(I,J) TEMP2 = TEMP2 + A(I,J)*X(IX) 110 CONTINUE Y(JY) = Y(JY) + ALPHA*TEMP2 JX = JX + INCX JY = JY + INCY 120 CONTINUE END IF END IF * RETURN * * End of DSYMV . * END SUBROUTINE DSYR2K(UPLO,TRANS,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC) * .. Scalar Arguments .. DOUBLE PRECISION ALPHA,BETA INTEGER K,LDA,LDB,LDC,N CHARACTER TRANS,UPLO * .. * .. Array Arguments .. DOUBLE PRECISION A(LDA,*),B(LDB,*),C(LDC,*) * .. * * Purpose * ======= * * DSYR2K performs one of the symmetric rank 2k operations * * C := alpha*A*B' + alpha*B*A' + beta*C, * * or * * C := alpha*A'*B + alpha*B'*A + beta*C, * * where alpha and beta are scalars, C is an n by n symmetric matrix * and A and B are n by k matrices in the first case and k by n * matrices in the second case. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the array C is to be referenced as * follows: * * UPLO = 'U' or 'u' Only the upper triangular part of C * is to be referenced. * * UPLO = 'L' or 'l' Only the lower triangular part of C * is to be referenced. * * Unchanged on exit. * * TRANS - CHARACTER*1. * On entry, TRANS specifies the operation to be performed as * follows: * * TRANS = 'N' or 'n' C := alpha*A*B' + alpha*B*A' + * beta*C. * * TRANS = 'T' or 't' C := alpha*A'*B + alpha*B'*A + * beta*C. * * TRANS = 'C' or 'c' C := alpha*A'*B + alpha*B'*A + * beta*C. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix C. N must be * at least zero. * Unchanged on exit. * * K - INTEGER. * On entry with TRANS = 'N' or 'n', K specifies the number * of columns of the matrices A and B, and on entry with * TRANS = 'T' or 't' or 'C' or 'c', K specifies the number * of rows of the matrices A and B. K must be at least zero. * Unchanged on exit. * * ALPHA - DOUBLE PRECISION. * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * A - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is * k when TRANS = 'N' or 'n', and is n otherwise. * Before entry with TRANS = 'N' or 'n', the leading n by k * part of the array A must contain the matrix A, otherwise * the leading k by n part of the array A must contain the * matrix A. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. When TRANS = 'N' or 'n' * then LDA must be at least max( 1, n ), otherwise LDA must * be at least max( 1, k ). * Unchanged on exit. * * B - DOUBLE PRECISION array of DIMENSION ( LDB, kb ), where kb is * k when TRANS = 'N' or 'n', and is n otherwise. * Before entry with TRANS = 'N' or 'n', the leading n by k * part of the array B must contain the matrix B, otherwise * the leading k by n part of the array B must contain the * matrix B. * Unchanged on exit. * * LDB - INTEGER. * On entry, LDB specifies the first dimension of B as declared * in the calling (sub) program. When TRANS = 'N' or 'n' * then LDB must be at least max( 1, n ), otherwise LDB must * be at least max( 1, k ). * Unchanged on exit. * * BETA - DOUBLE PRECISION. * On entry, BETA specifies the scalar beta. * Unchanged on exit. * * C - DOUBLE PRECISION array of DIMENSION ( LDC, n ). * Before entry with UPLO = 'U' or 'u', the leading n by n * upper triangular part of the array C must contain the upper * triangular part of the symmetric matrix and the strictly * lower triangular part of C is not referenced. On exit, the * upper triangular part of the array C is overwritten by the * upper triangular part of the updated matrix. * Before entry with UPLO = 'L' or 'l', the leading n by n * lower triangular part of the array C must contain the lower * triangular part of the symmetric matrix and the strictly * upper triangular part of C is not referenced. On exit, the * lower triangular part of the array C is overwritten by the * lower triangular part of the updated matrix. * * LDC - INTEGER. * On entry, LDC specifies the first dimension of C as declared * in the calling (sub) program. LDC must be at least * max( 1, n ). * Unchanged on exit. * * * Level 3 Blas routine. * * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Local Scalars .. DOUBLE PRECISION TEMP1,TEMP2 INTEGER I,INFO,J,L,NROWA LOGICAL UPPER * .. * .. Parameters .. DOUBLE PRECISION ONE,ZERO PARAMETER (ONE=1.0D+0,ZERO=0.0D+0) * .. * * Test the input parameters. * IF (LSAME(TRANS,'N')) THEN NROWA = N ELSE NROWA = K END IF UPPER = LSAME(UPLO,'U') * INFO = 0 IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN INFO = 1 ELSE IF ((.NOT.LSAME(TRANS,'N')) .AND. + (.NOT.LSAME(TRANS,'T')) .AND. + (.NOT.LSAME(TRANS,'C'))) THEN INFO = 2 ELSE IF (N.LT.0) THEN INFO = 3 ELSE IF (K.LT.0) THEN INFO = 4 ELSE IF (LDA.LT.MAX(1,NROWA)) THEN INFO = 7 ELSE IF (LDB.LT.MAX(1,NROWA)) THEN INFO = 9 ELSE IF (LDC.LT.MAX(1,N)) THEN INFO = 12 END IF IF (INFO.NE.0) THEN CALL XERBLA('DSYR2K',INFO) RETURN END IF * * Quick return if possible. * IF ((N.EQ.0) .OR. (((ALPHA.EQ.ZERO).OR. + (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN * * And when alpha.eq.zero. * IF (ALPHA.EQ.ZERO) THEN IF (UPPER) THEN IF (BETA.EQ.ZERO) THEN DO 20 J = 1,N DO 10 I = 1,J C(I,J) = ZERO 10 CONTINUE 20 CONTINUE ELSE DO 40 J = 1,N DO 30 I = 1,J C(I,J) = BETA*C(I,J) 30 CONTINUE 40 CONTINUE END IF ELSE IF (BETA.EQ.ZERO) THEN DO 60 J = 1,N DO 50 I = J,N C(I,J) = ZERO 50 CONTINUE 60 CONTINUE ELSE DO 80 J = 1,N DO 70 I = J,N C(I,J) = BETA*C(I,J) 70 CONTINUE 80 CONTINUE END IF END IF RETURN END IF * * Start the operations. * IF (LSAME(TRANS,'N')) THEN * * Form C := alpha*A*B' + alpha*B*A' + C. * IF (UPPER) THEN DO 130 J = 1,N IF (BETA.EQ.ZERO) THEN DO 90 I = 1,J C(I,J) = ZERO 90 CONTINUE ELSE IF (BETA.NE.ONE) THEN DO 100 I = 1,J C(I,J) = BETA*C(I,J) 100 CONTINUE END IF DO 120 L = 1,K IF ((A(J,L).NE.ZERO) .OR. (B(J,L).NE.ZERO)) THEN TEMP1 = ALPHA*B(J,L) TEMP2 = ALPHA*A(J,L) DO 110 I = 1,J C(I,J) = C(I,J) + A(I,L)*TEMP1 + + B(I,L)*TEMP2 110 CONTINUE END IF 120 CONTINUE 130 CONTINUE ELSE DO 180 J = 1,N IF (BETA.EQ.ZERO) THEN DO 140 I = J,N C(I,J) = ZERO 140 CONTINUE ELSE IF (BETA.NE.ONE) THEN DO 150 I = J,N C(I,J) = BETA*C(I,J) 150 CONTINUE END IF DO 170 L = 1,K IF ((A(J,L).NE.ZERO) .OR. (B(J,L).NE.ZERO)) THEN TEMP1 = ALPHA*B(J,L) TEMP2 = ALPHA*A(J,L) DO 160 I = J,N C(I,J) = C(I,J) + A(I,L)*TEMP1 + + B(I,L)*TEMP2 160 CONTINUE END IF 170 CONTINUE 180 CONTINUE END IF ELSE * * Form C := alpha*A'*B + alpha*B'*A + C. * IF (UPPER) THEN DO 210 J = 1,N DO 200 I = 1,J TEMP1 = ZERO TEMP2 = ZERO DO 190 L = 1,K TEMP1 = TEMP1 + A(L,I)*B(L,J) TEMP2 = TEMP2 + B(L,I)*A(L,J) 190 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = ALPHA*TEMP1 + ALPHA*TEMP2 ELSE C(I,J) = BETA*C(I,J) + ALPHA*TEMP1 + + ALPHA*TEMP2 END IF 200 CONTINUE 210 CONTINUE ELSE DO 240 J = 1,N DO 230 I = J,N TEMP1 = ZERO TEMP2 = ZERO DO 220 L = 1,K TEMP1 = TEMP1 + A(L,I)*B(L,J) TEMP2 = TEMP2 + B(L,I)*A(L,J) 220 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = ALPHA*TEMP1 + ALPHA*TEMP2 ELSE C(I,J) = BETA*C(I,J) + ALPHA*TEMP1 + + ALPHA*TEMP2 END IF 230 CONTINUE 240 CONTINUE END IF END IF * RETURN * * End of DSYR2K. * END SUBROUTINE DSYR2(UPLO,N,ALPHA,X,INCX,Y,INCY,A,LDA) * .. Scalar Arguments .. DOUBLE PRECISION ALPHA INTEGER INCX,INCY,LDA,N CHARACTER UPLO * .. * .. Array Arguments .. DOUBLE PRECISION A(LDA,*),X(*),Y(*) * .. * * Purpose * ======= * * DSYR2 performs the symmetric rank 2 operation * * A := alpha*x*y' + alpha*y*x' + A, * * where alpha is a scalar, x and y are n element vectors and A is an n * by n symmetric matrix. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the array A is to be referenced as * follows: * * UPLO = 'U' or 'u' Only the upper triangular part of A * is to be referenced. * * UPLO = 'L' or 'l' Only the lower triangular part of A * is to be referenced. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * ALPHA - DOUBLE PRECISION. * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * X - DOUBLE PRECISION array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * Y - DOUBLE PRECISION array of dimension at least * ( 1 + ( n - 1 )*abs( INCY ) ). * Before entry, the incremented array Y must contain the n * element vector y. * Unchanged on exit. * * INCY - INTEGER. * On entry, INCY specifies the increment for the elements of * Y. INCY must not be zero. * Unchanged on exit. * * A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). * Before entry with UPLO = 'U' or 'u', the leading n by n * upper triangular part of the array A must contain the upper * triangular part of the symmetric matrix and the strictly * lower triangular part of A is not referenced. On exit, the * upper triangular part of the array A is overwritten by the * upper triangular part of the updated matrix. * Before entry with UPLO = 'L' or 'l', the leading n by n * lower triangular part of the array A must contain the lower * triangular part of the symmetric matrix and the strictly * upper triangular part of A is not referenced. On exit, the * lower triangular part of the array A is overwritten by the * lower triangular part of the updated matrix. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * max( 1, n ). * Unchanged on exit. * * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * * .. Parameters .. DOUBLE PRECISION ZERO PARAMETER (ZERO=0.0D+0) * .. * .. Local Scalars .. DOUBLE PRECISION TEMP1,TEMP2 INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (N.LT.0) THEN INFO = 2 ELSE IF (INCX.EQ.0) THEN INFO = 5 ELSE IF (INCY.EQ.0) THEN INFO = 7 ELSE IF (LDA.LT.MAX(1,N)) THEN INFO = 9 END IF IF (INFO.NE.0) THEN CALL XERBLA('DSYR2 ',INFO) RETURN END IF * * Quick return if possible. * IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN * * Set up the start points in X and Y if the increments are not both * unity. * IF ((INCX.NE.1) .OR. (INCY.NE.1)) THEN IF (INCX.GT.0) THEN KX = 1 ELSE KX = 1 - (N-1)*INCX END IF IF (INCY.GT.0) THEN KY = 1 ELSE KY = 1 - (N-1)*INCY END IF JX = KX JY = KY END IF * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through the triangular part * of A. * IF (LSAME(UPLO,'U')) THEN * * Form A when A is stored in the upper triangle. * IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 20 J = 1,N IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN TEMP1 = ALPHA*Y(J) TEMP2 = ALPHA*X(J) DO 10 I = 1,J A(I,J) = A(I,J) + X(I)*TEMP1 + Y(I)*TEMP2 10 CONTINUE END IF 20 CONTINUE ELSE DO 40 J = 1,N IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN TEMP1 = ALPHA*Y(JY) TEMP2 = ALPHA*X(JX) IX = KX IY = KY DO 30 I = 1,J A(I,J) = A(I,J) + X(IX)*TEMP1 + Y(IY)*TEMP2 IX = IX + INCX IY = IY + INCY 30 CONTINUE END IF JX = JX + INCX JY = JY + INCY 40 CONTINUE END IF ELSE * * Form A when A is stored in the lower triangle. * IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 60 J = 1,N IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN TEMP1 = ALPHA*Y(J) TEMP2 = ALPHA*X(J) DO 50 I = J,N A(I,J) = A(I,J) + X(I)*TEMP1 + Y(I)*TEMP2 50 CONTINUE END IF 60 CONTINUE ELSE DO 80 J = 1,N IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN TEMP1 = ALPHA*Y(JY) TEMP2 = ALPHA*X(JX) IX = JX IY = JY DO 70 I = J,N A(I,J) = A(I,J) + X(IX)*TEMP1 + Y(IY)*TEMP2 IX = IX + INCX IY = IY + INCY 70 CONTINUE END IF JX = JX + INCX JY = JY + INCY 80 CONTINUE END IF END IF * RETURN * * End of DSYR2 . * END SUBROUTINE DSYMM(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC) * .. Scalar Arguments .. DOUBLE PRECISION ALPHA,BETA INTEGER LDA,LDB,LDC,M,N CHARACTER SIDE,UPLO * .. * .. Array Arguments .. DOUBLE PRECISION A(LDA,*),B(LDB,*),C(LDC,*) * .. * * Purpose * ======= * * DSYMM performs one of the matrix-matrix operations * * C := alpha*A*B + beta*C, * * or * * C := alpha*B*A + beta*C, * * where alpha and beta are scalars, A is a symmetric matrix and B and * C are m by n matrices. * * Arguments * ========== * * SIDE - CHARACTER*1. * On entry, SIDE specifies whether the symmetric matrix A * appears on the left or right in the operation as follows: * * SIDE = 'L' or 'l' C := alpha*A*B + beta*C, * * SIDE = 'R' or 'r' C := alpha*B*A + beta*C, * * Unchanged on exit. * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the symmetric matrix A is to be * referenced as follows: * * UPLO = 'U' or 'u' Only the upper triangular part of the * symmetric matrix is to be referenced. * * UPLO = 'L' or 'l' Only the lower triangular part of the * symmetric matrix is to be referenced. * * Unchanged on exit. * * M - INTEGER. * On entry, M specifies the number of rows of the matrix C. * M must be at least zero. * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the number of columns of the matrix C. * N must be at least zero. * Unchanged on exit. * * ALPHA - DOUBLE PRECISION. * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * A - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is * m when SIDE = 'L' or 'l' and is n otherwise. * Before entry with SIDE = 'L' or 'l', the m by m part of * the array A must contain the symmetric matrix, such that * when UPLO = 'U' or 'u', the leading m by m upper triangular * part of the array A must contain the upper triangular part * of the symmetric matrix and the strictly lower triangular * part of A is not referenced, and when UPLO = 'L' or 'l', * the leading m by m lower triangular part of the array A * must contain the lower triangular part of the symmetric * matrix and the strictly upper triangular part of A is not * referenced. * Before entry with SIDE = 'R' or 'r', the n by n part of * the array A must contain the symmetric matrix, such that * when UPLO = 'U' or 'u', the leading n by n upper triangular * part of the array A must contain the upper triangular part * of the symmetric matrix and the strictly lower triangular * part of A is not referenced, and when UPLO = 'L' or 'l', * the leading n by n lower triangular part of the array A * must contain the lower triangular part of the symmetric * matrix and the strictly upper triangular part of A is not * referenced. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. When SIDE = 'L' or 'l' then * LDA must be at least max( 1, m ), otherwise LDA must be at * least max( 1, n ). * Unchanged on exit. * * B - DOUBLE PRECISION array of DIMENSION ( LDB, n ). * Before entry, the leading m by n part of the array B must * contain the matrix B. * Unchanged on exit. * * LDB - INTEGER. * On entry, LDB specifies the first dimension of B as declared * in the calling (sub) program. LDB must be at least * max( 1, m ). * Unchanged on exit. * * BETA - DOUBLE PRECISION. * On entry, BETA specifies the scalar beta. When BETA is * supplied as zero then C need not be set on input. * Unchanged on exit. * * C - DOUBLE PRECISION array of DIMENSION ( LDC, n ). * Before entry, the leading m by n part of the array C must * contain the matrix C, except when beta is zero, in which * case C need not be set on entry. * On exit, the array C is overwritten by the m by n updated * matrix. * * LDC - INTEGER. * On entry, LDC specifies the first dimension of C as declared * in the calling (sub) program. LDC must be at least * max( 1, m ). * Unchanged on exit. * * Further Details * =============== * * Level 3 Blas routine. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * ===================================================================== * * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Local Scalars .. DOUBLE PRECISION TEMP1,TEMP2 INTEGER I,INFO,J,K,NROWA LOGICAL UPPER * .. * .. Parameters .. DOUBLE PRECISION ONE,ZERO PARAMETER (ONE=1.0D+0,ZERO=0.0D+0) * .. * * Set NROWA as the number of rows of A. * IF (LSAME(SIDE,'L')) THEN NROWA = M ELSE NROWA = N END IF UPPER = LSAME(UPLO,'U') * * Test the input parameters. * INFO = 0 IF ((.NOT.LSAME(SIDE,'L')) .AND. (.NOT.LSAME(SIDE,'R'))) THEN INFO = 1 ELSE IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN INFO = 2 ELSE IF (M.LT.0) THEN INFO = 3 ELSE IF (N.LT.0) THEN INFO = 4 ELSE IF (LDA.LT.MAX(1,NROWA)) THEN INFO = 7 ELSE IF (LDB.LT.MAX(1,M)) THEN INFO = 9 ELSE IF (LDC.LT.MAX(1,M)) THEN INFO = 12 END IF IF (INFO.NE.0) THEN CALL XERBLA('DSYMM ',INFO) RETURN END IF * * Quick return if possible. * IF ((M.EQ.0) .OR. (N.EQ.0) .OR. + ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN * * And when alpha.eq.zero. * IF (ALPHA.EQ.ZERO) THEN IF (BETA.EQ.ZERO) THEN DO 20 J = 1,N DO 10 I = 1,M C(I,J) = ZERO 10 CONTINUE 20 CONTINUE ELSE DO 40 J = 1,N DO 30 I = 1,M C(I,J) = BETA*C(I,J) 30 CONTINUE 40 CONTINUE END IF RETURN END IF * * Start the operations. * IF (LSAME(SIDE,'L')) THEN * * Form C := alpha*A*B + beta*C. * IF (UPPER) THEN DO 70 J = 1,N DO 60 I = 1,M TEMP1 = ALPHA*B(I,J) TEMP2 = ZERO DO 50 K = 1,I - 1 C(K,J) = C(K,J) + TEMP1*A(K,I) TEMP2 = TEMP2 + B(K,J)*A(K,I) 50 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = TEMP1*A(I,I) + ALPHA*TEMP2 ELSE C(I,J) = BETA*C(I,J) + TEMP1*A(I,I) + + ALPHA*TEMP2 END IF 60 CONTINUE 70 CONTINUE ELSE DO 100 J = 1,N DO 90 I = M,1,-1 TEMP1 = ALPHA*B(I,J) TEMP2 = ZERO DO 80 K = I + 1,M C(K,J) = C(K,J) + TEMP1*A(K,I) TEMP2 = TEMP2 + B(K,J)*A(K,I) 80 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = TEMP1*A(I,I) + ALPHA*TEMP2 ELSE C(I,J) = BETA*C(I,J) + TEMP1*A(I,I) + + ALPHA*TEMP2 END IF 90 CONTINUE 100 CONTINUE END IF ELSE * * Form C := alpha*B*A + beta*C. * DO 170 J = 1,N TEMP1 = ALPHA*A(J,J) IF (BETA.EQ.ZERO) THEN DO 110 I = 1,M C(I,J) = TEMP1*B(I,J) 110 CONTINUE ELSE DO 120 I = 1,M C(I,J) = BETA*C(I,J) + TEMP1*B(I,J) 120 CONTINUE END IF DO 140 K = 1,J - 1 IF (UPPER) THEN TEMP1 = ALPHA*A(K,J) ELSE TEMP1 = ALPHA*A(J,K) END IF DO 130 I = 1,M C(I,J) = C(I,J) + TEMP1*B(I,K) 130 CONTINUE 140 CONTINUE DO 160 K = J + 1,N IF (UPPER) THEN TEMP1 = ALPHA*A(J,K) ELSE TEMP1 = ALPHA*A(K,J) END IF DO 150 I = 1,M C(I,J) = C(I,J) + TEMP1*B(I,K) 150 CONTINUE 160 CONTINUE 170 CONTINUE END IF * RETURN * * End of DSYMM . * END SUBROUTINE SSYR2K(UPLO,TRANS,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC) * .. Scalar Arguments .. REAL ALPHA,BETA INTEGER K,LDA,LDB,LDC,N CHARACTER TRANS,UPLO * .. * .. Array Arguments .. REAL A(LDA,*),B(LDB,*),C(LDC,*) * .. * * Purpose * ======= * * SSYR2K performs one of the symmetric rank 2k operations * * C := alpha*A*B**T + alpha*B*A**T + beta*C, * * or * * C := alpha*A**T*B + alpha*B**T*A + beta*C, * * where alpha and beta are scalars, C is an n by n symmetric matrix * and A and B are n by k matrices in the first case and k by n * matrices in the second case. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the array C is to be referenced as * follows: * * UPLO = 'U' or 'u' Only the upper triangular part of C * is to be referenced. * * UPLO = 'L' or 'l' Only the lower triangular part of C * is to be referenced. * * Unchanged on exit. * * TRANS - CHARACTER*1. * On entry, TRANS specifies the operation to be performed as * follows: * * TRANS = 'N' or 'n' C := alpha*A*B**T + alpha*B*A**T + * beta*C. * * TRANS = 'T' or 't' C := alpha*A**T*B + alpha*B**T*A + * beta*C. * * TRANS = 'C' or 'c' C := alpha*A**T*B + alpha*B**T*A + * beta*C. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix C. N must be * at least zero. * Unchanged on exit. * * K - INTEGER. * On entry with TRANS = 'N' or 'n', K specifies the number * of columns of the matrices A and B, and on entry with * TRANS = 'T' or 't' or 'C' or 'c', K specifies the number * of rows of the matrices A and B. K must be at least zero. * Unchanged on exit. * * ALPHA - REAL . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * A - REAL array of DIMENSION ( LDA, ka ), where ka is * k when TRANS = 'N' or 'n', and is n otherwise. * Before entry with TRANS = 'N' or 'n', the leading n by k * part of the array A must contain the matrix A, otherwise * the leading k by n part of the array A must contain the * matrix A. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. When TRANS = 'N' or 'n' * then LDA must be at least max( 1, n ), otherwise LDA must * be at least max( 1, k ). * Unchanged on exit. * * B - REAL array of DIMENSION ( LDB, kb ), where kb is * k when TRANS = 'N' or 'n', and is n otherwise. * Before entry with TRANS = 'N' or 'n', the leading n by k * part of the array B must contain the matrix B, otherwise * the leading k by n part of the array B must contain the * matrix B. * Unchanged on exit. * * LDB - INTEGER. * On entry, LDB specifies the first dimension of B as declared * in the calling (sub) program. When TRANS = 'N' or 'n' * then LDB must be at least max( 1, n ), otherwise LDB must * be at least max( 1, k ). * Unchanged on exit. * * BETA - REAL . * On entry, BETA specifies the scalar beta. * Unchanged on exit. * * C - REAL array of DIMENSION ( LDC, n ). * Before entry with UPLO = 'U' or 'u', the leading n by n * upper triangular part of the array C must contain the upper * triangular part of the symmetric matrix and the strictly * lower triangular part of C is not referenced. On exit, the * upper triangular part of the array C is overwritten by the * upper triangular part of the updated matrix. * Before entry with UPLO = 'L' or 'l', the leading n by n * lower triangular part of the array C must contain the lower * triangular part of the symmetric matrix and the strictly * upper triangular part of C is not referenced. On exit, the * lower triangular part of the array C is overwritten by the * lower triangular part of the updated matrix. * * LDC - INTEGER. * On entry, LDC specifies the first dimension of C as declared * in the calling (sub) program. LDC must be at least * max( 1, n ). * Unchanged on exit. * * Further Details * =============== * * Level 3 Blas routine. * * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * ===================================================================== * * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Local Scalars .. REAL TEMP1,TEMP2 INTEGER I,INFO,J,L,NROWA LOGICAL UPPER * .. * .. Parameters .. REAL ONE,ZERO PARAMETER (ONE=1.0E+0,ZERO=0.0E+0) * .. * * Test the input parameters. * IF (LSAME(TRANS,'N')) THEN NROWA = N ELSE NROWA = K END IF UPPER = LSAME(UPLO,'U') * INFO = 0 IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN INFO = 1 ELSE IF ((.NOT.LSAME(TRANS,'N')) .AND. + (.NOT.LSAME(TRANS,'T')) .AND. + (.NOT.LSAME(TRANS,'C'))) THEN INFO = 2 ELSE IF (N.LT.0) THEN INFO = 3 ELSE IF (K.LT.0) THEN INFO = 4 ELSE IF (LDA.LT.MAX(1,NROWA)) THEN INFO = 7 ELSE IF (LDB.LT.MAX(1,NROWA)) THEN INFO = 9 ELSE IF (LDC.LT.MAX(1,N)) THEN INFO = 12 END IF IF (INFO.NE.0) THEN CALL XERBLA('SSYR2K',INFO) RETURN END IF * * Quick return if possible. * IF ((N.EQ.0) .OR. (((ALPHA.EQ.ZERO).OR. + (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN * * And when alpha.eq.zero. * IF (ALPHA.EQ.ZERO) THEN IF (UPPER) THEN IF (BETA.EQ.ZERO) THEN DO 20 J = 1,N DO 10 I = 1,J C(I,J) = ZERO 10 CONTINUE 20 CONTINUE ELSE DO 40 J = 1,N DO 30 I = 1,J C(I,J) = BETA*C(I,J) 30 CONTINUE 40 CONTINUE END IF ELSE IF (BETA.EQ.ZERO) THEN DO 60 J = 1,N DO 50 I = J,N C(I,J) = ZERO 50 CONTINUE 60 CONTINUE ELSE DO 80 J = 1,N DO 70 I = J,N C(I,J) = BETA*C(I,J) 70 CONTINUE 80 CONTINUE END IF END IF RETURN END IF * * Start the operations. * IF (LSAME(TRANS,'N')) THEN * * Form C := alpha*A*B**T + alpha*B*A**T + C. * IF (UPPER) THEN DO 130 J = 1,N IF (BETA.EQ.ZERO) THEN DO 90 I = 1,J C(I,J) = ZERO 90 CONTINUE ELSE IF (BETA.NE.ONE) THEN DO 100 I = 1,J C(I,J) = BETA*C(I,J) 100 CONTINUE END IF DO 120 L = 1,K IF ((A(J,L).NE.ZERO) .OR. (B(J,L).NE.ZERO)) THEN TEMP1 = ALPHA*B(J,L) TEMP2 = ALPHA*A(J,L) DO 110 I = 1,J C(I,J) = C(I,J) + A(I,L)*TEMP1 + + B(I,L)*TEMP2 110 CONTINUE END IF 120 CONTINUE 130 CONTINUE ELSE DO 180 J = 1,N IF (BETA.EQ.ZERO) THEN DO 140 I = J,N C(I,J) = ZERO 140 CONTINUE ELSE IF (BETA.NE.ONE) THEN DO 150 I = J,N C(I,J) = BETA*C(I,J) 150 CONTINUE END IF DO 170 L = 1,K IF ((A(J,L).NE.ZERO) .OR. (B(J,L).NE.ZERO)) THEN TEMP1 = ALPHA*B(J,L) TEMP2 = ALPHA*A(J,L) DO 160 I = J,N C(I,J) = C(I,J) + A(I,L)*TEMP1 + + B(I,L)*TEMP2 160 CONTINUE END IF 170 CONTINUE 180 CONTINUE END IF ELSE * * Form C := alpha*A**T*B + alpha*B**T*A + C. * IF (UPPER) THEN DO 210 J = 1,N DO 200 I = 1,J TEMP1 = ZERO TEMP2 = ZERO DO 190 L = 1,K TEMP1 = TEMP1 + A(L,I)*B(L,J) TEMP2 = TEMP2 + B(L,I)*A(L,J) 190 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = ALPHA*TEMP1 + ALPHA*TEMP2 ELSE C(I,J) = BETA*C(I,J) + ALPHA*TEMP1 + + ALPHA*TEMP2 END IF 200 CONTINUE 210 CONTINUE ELSE DO 240 J = 1,N DO 230 I = J,N TEMP1 = ZERO TEMP2 = ZERO DO 220 L = 1,K TEMP1 = TEMP1 + A(L,I)*B(L,J) TEMP2 = TEMP2 + B(L,I)*A(L,J) 220 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = ALPHA*TEMP1 + ALPHA*TEMP2 ELSE C(I,J) = BETA*C(I,J) + ALPHA*TEMP1 + + ALPHA*TEMP2 END IF 230 CONTINUE 240 CONTINUE END IF END IF * RETURN * * End of SSYR2K. * END SUBROUTINE SSYR2(UPLO,N,ALPHA,X,INCX,Y,INCY,A,LDA) * .. Scalar Arguments .. REAL ALPHA INTEGER INCX,INCY,LDA,N CHARACTER UPLO * .. * .. Array Arguments .. REAL A(LDA,*),X(*),Y(*) * .. * * Purpose * ======= * * SSYR2 performs the symmetric rank 2 operation * * A := alpha*x*y**T + alpha*y*x**T + A, * * where alpha is a scalar, x and y are n element vectors and A is an n * by n symmetric matrix. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the array A is to be referenced as * follows: * * UPLO = 'U' or 'u' Only the upper triangular part of A * is to be referenced. * * UPLO = 'L' or 'l' Only the lower triangular part of A * is to be referenced. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * ALPHA - REAL . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * X - REAL array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * Y - REAL array of dimension at least * ( 1 + ( n - 1 )*abs( INCY ) ). * Before entry, the incremented array Y must contain the n * element vector y. * Unchanged on exit. * * INCY - INTEGER. * On entry, INCY specifies the increment for the elements of * Y. INCY must not be zero. * Unchanged on exit. * * A - REAL array of DIMENSION ( LDA, n ). * Before entry with UPLO = 'U' or 'u', the leading n by n * upper triangular part of the array A must contain the upper * triangular part of the symmetric matrix and the strictly * lower triangular part of A is not referenced. On exit, the * upper triangular part of the array A is overwritten by the * upper triangular part of the updated matrix. * Before entry with UPLO = 'L' or 'l', the leading n by n * lower triangular part of the array A must contain the lower * triangular part of the symmetric matrix and the strictly * upper triangular part of A is not referenced. On exit, the * lower triangular part of the array A is overwritten by the * lower triangular part of the updated matrix. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * max( 1, n ). * Unchanged on exit. * * Further Details * =============== * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. REAL ZERO PARAMETER (ZERO=0.0E+0) * .. * .. Local Scalars .. REAL TEMP1,TEMP2 INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (N.LT.0) THEN INFO = 2 ELSE IF (INCX.EQ.0) THEN INFO = 5 ELSE IF (INCY.EQ.0) THEN INFO = 7 ELSE IF (LDA.LT.MAX(1,N)) THEN INFO = 9 END IF IF (INFO.NE.0) THEN CALL XERBLA('SSYR2 ',INFO) RETURN END IF * * Quick return if possible. * IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN * * Set up the start points in X and Y if the increments are not both * unity. * IF ((INCX.NE.1) .OR. (INCY.NE.1)) THEN IF (INCX.GT.0) THEN KX = 1 ELSE KX = 1 - (N-1)*INCX END IF IF (INCY.GT.0) THEN KY = 1 ELSE KY = 1 - (N-1)*INCY END IF JX = KX JY = KY END IF * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through the triangular part * of A. * IF (LSAME(UPLO,'U')) THEN * * Form A when A is stored in the upper triangle. * IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 20 J = 1,N IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN TEMP1 = ALPHA*Y(J) TEMP2 = ALPHA*X(J) DO 10 I = 1,J A(I,J) = A(I,J) + X(I)*TEMP1 + Y(I)*TEMP2 10 CONTINUE END IF 20 CONTINUE ELSE DO 40 J = 1,N IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN TEMP1 = ALPHA*Y(JY) TEMP2 = ALPHA*X(JX) IX = KX IY = KY DO 30 I = 1,J A(I,J) = A(I,J) + X(IX)*TEMP1 + Y(IY)*TEMP2 IX = IX + INCX IY = IY + INCY 30 CONTINUE END IF JX = JX + INCX JY = JY + INCY 40 CONTINUE END IF ELSE * * Form A when A is stored in the lower triangle. * IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 60 J = 1,N IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN TEMP1 = ALPHA*Y(J) TEMP2 = ALPHA*X(J) DO 50 I = J,N A(I,J) = A(I,J) + X(I)*TEMP1 + Y(I)*TEMP2 50 CONTINUE END IF 60 CONTINUE ELSE DO 80 J = 1,N IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN TEMP1 = ALPHA*Y(JY) TEMP2 = ALPHA*X(JX) IX = JX IY = JY DO 70 I = J,N A(I,J) = A(I,J) + X(IX)*TEMP1 + Y(IY)*TEMP2 IX = IX + INCX IY = IY + INCY 70 CONTINUE END IF JX = JX + INCX JY = JY + INCY 80 CONTINUE END IF END IF * RETURN * * End of SSYR2 . * END SUBROUTINE SSYMV(UPLO,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) * .. Scalar Arguments .. REAL ALPHA,BETA INTEGER INCX,INCY,LDA,N CHARACTER UPLO * .. * .. Array Arguments .. REAL A(LDA,*),X(*),Y(*) * .. * * Purpose * ======= * * SSYMV performs the matrix-vector operation * * y := alpha*A*x + beta*y, * * where alpha and beta are scalars, x and y are n element vectors and * A is an n by n symmetric matrix. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the array A is to be referenced as * follows: * * UPLO = 'U' or 'u' Only the upper triangular part of A * is to be referenced. * * UPLO = 'L' or 'l' Only the lower triangular part of A * is to be referenced. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * ALPHA - REAL . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * A - REAL array of DIMENSION ( LDA, n ). * Before entry with UPLO = 'U' or 'u', the leading n by n * upper triangular part of the array A must contain the upper * triangular part of the symmetric matrix and the strictly * lower triangular part of A is not referenced. * Before entry with UPLO = 'L' or 'l', the leading n by n * lower triangular part of the array A must contain the lower * triangular part of the symmetric matrix and the strictly * upper triangular part of A is not referenced. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * max( 1, n ). * Unchanged on exit. * * X - REAL array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * BETA - REAL . * On entry, BETA specifies the scalar beta. When BETA is * supplied as zero then Y need not be set on input. * Unchanged on exit. * * Y - REAL array of dimension at least * ( 1 + ( n - 1 )*abs( INCY ) ). * Before entry, the incremented array Y must contain the n * element vector y. On exit, Y is overwritten by the updated * vector y. * * INCY - INTEGER. * On entry, INCY specifies the increment for the elements of * Y. INCY must not be zero. * Unchanged on exit. * * Further Details * =============== * * Level 2 Blas routine. * The vector and matrix arguments are not referenced when N = 0, or M = 0 * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. REAL ONE,ZERO PARAMETER (ONE=1.0E+0,ZERO=0.0E+0) * .. * .. Local Scalars .. REAL TEMP1,TEMP2 INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (N.LT.0) THEN INFO = 2 ELSE IF (LDA.LT.MAX(1,N)) THEN INFO = 5 ELSE IF (INCX.EQ.0) THEN INFO = 7 ELSE IF (INCY.EQ.0) THEN INFO = 10 END IF IF (INFO.NE.0) THEN CALL XERBLA('SSYMV ',INFO) RETURN END IF * * Quick return if possible. * IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN * * Set up the start points in X and Y. * IF (INCX.GT.0) THEN KX = 1 ELSE KX = 1 - (N-1)*INCX END IF IF (INCY.GT.0) THEN KY = 1 ELSE KY = 1 - (N-1)*INCY END IF * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through the triangular part * of A. * * First form y := beta*y. * IF (BETA.NE.ONE) THEN IF (INCY.EQ.1) THEN IF (BETA.EQ.ZERO) THEN DO 10 I = 1,N Y(I) = ZERO 10 CONTINUE ELSE DO 20 I = 1,N Y(I) = BETA*Y(I) 20 CONTINUE END IF ELSE IY = KY IF (BETA.EQ.ZERO) THEN DO 30 I = 1,N Y(IY) = ZERO IY = IY + INCY 30 CONTINUE ELSE DO 40 I = 1,N Y(IY) = BETA*Y(IY) IY = IY + INCY 40 CONTINUE END IF END IF END IF IF (ALPHA.EQ.ZERO) RETURN IF (LSAME(UPLO,'U')) THEN * * Form y when A is stored in upper triangle. * IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 60 J = 1,N TEMP1 = ALPHA*X(J) TEMP2 = ZERO DO 50 I = 1,J - 1 Y(I) = Y(I) + TEMP1*A(I,J) TEMP2 = TEMP2 + A(I,J)*X(I) 50 CONTINUE Y(J) = Y(J) + TEMP1*A(J,J) + ALPHA*TEMP2 60 CONTINUE ELSE JX = KX JY = KY DO 80 J = 1,N TEMP1 = ALPHA*X(JX) TEMP2 = ZERO IX = KX IY = KY DO 70 I = 1,J - 1 Y(IY) = Y(IY) + TEMP1*A(I,J) TEMP2 = TEMP2 + A(I,J)*X(IX) IX = IX + INCX IY = IY + INCY 70 CONTINUE Y(JY) = Y(JY) + TEMP1*A(J,J) + ALPHA*TEMP2 JX = JX + INCX JY = JY + INCY 80 CONTINUE END IF ELSE * * Form y when A is stored in lower triangle. * IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 100 J = 1,N TEMP1 = ALPHA*X(J) TEMP2 = ZERO Y(J) = Y(J) + TEMP1*A(J,J) DO 90 I = J + 1,N Y(I) = Y(I) + TEMP1*A(I,J) TEMP2 = TEMP2 + A(I,J)*X(I) 90 CONTINUE Y(J) = Y(J) + ALPHA*TEMP2 100 CONTINUE ELSE JX = KX JY = KY DO 120 J = 1,N TEMP1 = ALPHA*X(JX) TEMP2 = ZERO Y(JY) = Y(JY) + TEMP1*A(J,J) IX = JX IY = JY DO 110 I = J + 1,N IX = IX + INCX IY = IY + INCY Y(IY) = Y(IY) + TEMP1*A(I,J) TEMP2 = TEMP2 + A(I,J)*X(IX) 110 CONTINUE Y(JY) = Y(JY) + ALPHA*TEMP2 JX = JX + INCX JY = JY + INCY 120 CONTINUE END IF END IF * RETURN * * End of SSYMV . * END SUBROUTINE SSYMM(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC) * .. Scalar Arguments .. REAL ALPHA,BETA INTEGER LDA,LDB,LDC,M,N CHARACTER SIDE,UPLO * .. * .. Array Arguments .. REAL A(LDA,*),B(LDB,*),C(LDC,*) * .. * * Purpose * ======= * * SSYMM performs one of the matrix-matrix operations * * C := alpha*A*B + beta*C, * * or * * C := alpha*B*A + beta*C, * * where alpha and beta are scalars, A is a symmetric matrix and B and * C are m by n matrices. * * Arguments * ========== * * SIDE - CHARACTER*1. * On entry, SIDE specifies whether the symmetric matrix A * appears on the left or right in the operation as follows: * * SIDE = 'L' or 'l' C := alpha*A*B + beta*C, * * SIDE = 'R' or 'r' C := alpha*B*A + beta*C, * * Unchanged on exit. * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the symmetric matrix A is to be * referenced as follows: * * UPLO = 'U' or 'u' Only the upper triangular part of the * symmetric matrix is to be referenced. * * UPLO = 'L' or 'l' Only the lower triangular part of the * symmetric matrix is to be referenced. * * Unchanged on exit. * * M - INTEGER. * On entry, M specifies the number of rows of the matrix C. * M must be at least zero. * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the number of columns of the matrix C. * N must be at least zero. * Unchanged on exit. * * ALPHA - REAL . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * A - REAL array of DIMENSION ( LDA, ka ), where ka is * m when SIDE = 'L' or 'l' and is n otherwise. * Before entry with SIDE = 'L' or 'l', the m by m part of * the array A must contain the symmetric matrix, such that * when UPLO = 'U' or 'u', the leading m by m upper triangular * part of the array A must contain the upper triangular part * of the symmetric matrix and the strictly lower triangular * part of A is not referenced, and when UPLO = 'L' or 'l', * the leading m by m lower triangular part of the array A * must contain the lower triangular part of the symmetric * matrix and the strictly upper triangular part of A is not * referenced. * Before entry with SIDE = 'R' or 'r', the n by n part of * the array A must contain the symmetric matrix, such that * when UPLO = 'U' or 'u', the leading n by n upper triangular * part of the array A must contain the upper triangular part * of the symmetric matrix and the strictly lower triangular * part of A is not referenced, and when UPLO = 'L' or 'l', * the leading n by n lower triangular part of the array A * must contain the lower triangular part of the symmetric * matrix and the strictly upper triangular part of A is not * referenced. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. When SIDE = 'L' or 'l' then * LDA must be at least max( 1, m ), otherwise LDA must be at * least max( 1, n ). * Unchanged on exit. * * B - REAL array of DIMENSION ( LDB, n ). * Before entry, the leading m by n part of the array B must * contain the matrix B. * Unchanged on exit. * * LDB - INTEGER. * On entry, LDB specifies the first dimension of B as declared * in the calling (sub) program. LDB must be at least * max( 1, m ). * Unchanged on exit. * * BETA - REAL . * On entry, BETA specifies the scalar beta. When BETA is * supplied as zero then C need not be set on input. * Unchanged on exit. * * C - REAL array of DIMENSION ( LDC, n ). * Before entry, the leading m by n part of the array C must * contain the matrix C, except when beta is zero, in which * case C need not be set on entry. * On exit, the array C is overwritten by the m by n updated * matrix. * * LDC - INTEGER. * On entry, LDC specifies the first dimension of C as declared * in the calling (sub) program. LDC must be at least * max( 1, m ). * Unchanged on exit. * * Further Details * =============== * * Level 3 Blas routine. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * ===================================================================== * * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Local Scalars .. REAL TEMP1,TEMP2 INTEGER I,INFO,J,K,NROWA LOGICAL UPPER * .. * .. Parameters .. REAL ONE,ZERO PARAMETER (ONE=1.0E+0,ZERO=0.0E+0) * .. * * Set NROWA as the number of rows of A. * IF (LSAME(SIDE,'L')) THEN NROWA = M ELSE NROWA = N END IF UPPER = LSAME(UPLO,'U') * * Test the input parameters. * INFO = 0 IF ((.NOT.LSAME(SIDE,'L')) .AND. (.NOT.LSAME(SIDE,'R'))) THEN INFO = 1 ELSE IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN INFO = 2 ELSE IF (M.LT.0) THEN INFO = 3 ELSE IF (N.LT.0) THEN INFO = 4 ELSE IF (LDA.LT.MAX(1,NROWA)) THEN INFO = 7 ELSE IF (LDB.LT.MAX(1,M)) THEN INFO = 9 ELSE IF (LDC.LT.MAX(1,M)) THEN INFO = 12 END IF IF (INFO.NE.0) THEN CALL XERBLA('SSYMM ',INFO) RETURN END IF * * Quick return if possible. * IF ((M.EQ.0) .OR. (N.EQ.0) .OR. + ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN * * And when alpha.eq.zero. * IF (ALPHA.EQ.ZERO) THEN IF (BETA.EQ.ZERO) THEN DO 20 J = 1,N DO 10 I = 1,M C(I,J) = ZERO 10 CONTINUE 20 CONTINUE ELSE DO 40 J = 1,N DO 30 I = 1,M C(I,J) = BETA*C(I,J) 30 CONTINUE 40 CONTINUE END IF RETURN END IF * * Start the operations. * IF (LSAME(SIDE,'L')) THEN * * Form C := alpha*A*B + beta*C. * IF (UPPER) THEN DO 70 J = 1,N DO 60 I = 1,M TEMP1 = ALPHA*B(I,J) TEMP2 = ZERO DO 50 K = 1,I - 1 C(K,J) = C(K,J) + TEMP1*A(K,I) TEMP2 = TEMP2 + B(K,J)*A(K,I) 50 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = TEMP1*A(I,I) + ALPHA*TEMP2 ELSE C(I,J) = BETA*C(I,J) + TEMP1*A(I,I) + + ALPHA*TEMP2 END IF 60 CONTINUE 70 CONTINUE ELSE DO 100 J = 1,N DO 90 I = M,1,-1 TEMP1 = ALPHA*B(I,J) TEMP2 = ZERO DO 80 K = I + 1,M C(K,J) = C(K,J) + TEMP1*A(K,I) TEMP2 = TEMP2 + B(K,J)*A(K,I) 80 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = TEMP1*A(I,I) + ALPHA*TEMP2 ELSE C(I,J) = BETA*C(I,J) + TEMP1*A(I,I) + + ALPHA*TEMP2 END IF 90 CONTINUE 100 CONTINUE END IF ELSE * * Form C := alpha*B*A + beta*C. * DO 170 J = 1,N TEMP1 = ALPHA*A(J,J) IF (BETA.EQ.ZERO) THEN DO 110 I = 1,M C(I,J) = TEMP1*B(I,J) 110 CONTINUE ELSE DO 120 I = 1,M C(I,J) = BETA*C(I,J) + TEMP1*B(I,J) 120 CONTINUE END IF DO 140 K = 1,J - 1 IF (UPPER) THEN TEMP1 = ALPHA*A(K,J) ELSE TEMP1 = ALPHA*A(J,K) END IF DO 130 I = 1,M C(I,J) = C(I,J) + TEMP1*B(I,K) 130 CONTINUE 140 CONTINUE DO 160 K = J + 1,N IF (UPPER) THEN TEMP1 = ALPHA*A(J,K) ELSE TEMP1 = ALPHA*A(K,J) END IF DO 150 I = 1,M C(I,J) = C(I,J) + TEMP1*B(I,K) 150 CONTINUE 160 CONTINUE 170 CONTINUE END IF * RETURN * * End of SSYMM . * END SUBROUTINE STRMM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB) * .. Scalar Arguments .. REAL ALPHA INTEGER LDA,LDB,M,N CHARACTER DIAG,SIDE,TRANSA,UPLO * .. * .. Array Arguments .. REAL A(LDA,*),B(LDB,*) * .. * * Purpose * ======= * * STRMM performs one of the matrix-matrix operations * * B := alpha*op( A )*B, or B := alpha*B*op( A ), * * where alpha is a scalar, B is an m by n matrix, A is a unit, or * non-unit, upper or lower triangular matrix and op( A ) is one of * * op( A ) = A or op( A ) = A**T. * * Arguments * ========== * * SIDE - CHARACTER*1. * On entry, SIDE specifies whether op( A ) multiplies B from * the left or right as follows: * * SIDE = 'L' or 'l' B := alpha*op( A )*B. * * SIDE = 'R' or 'r' B := alpha*B*op( A ). * * Unchanged on exit. * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the matrix A is an upper or * lower triangular matrix as follows: * * UPLO = 'U' or 'u' A is an upper triangular matrix. * * UPLO = 'L' or 'l' A is a lower triangular matrix. * * Unchanged on exit. * * TRANSA - CHARACTER*1. * On entry, TRANSA specifies the form of op( A ) to be used in * the matrix multiplication as follows: * * TRANSA = 'N' or 'n' op( A ) = A. * * TRANSA = 'T' or 't' op( A ) = A**T. * * TRANSA = 'C' or 'c' op( A ) = A**T. * * Unchanged on exit. * * DIAG - CHARACTER*1. * On entry, DIAG specifies whether or not A is unit triangular * as follows: * * DIAG = 'U' or 'u' A is assumed to be unit triangular. * * DIAG = 'N' or 'n' A is not assumed to be unit * triangular. * * Unchanged on exit. * * M - INTEGER. * On entry, M specifies the number of rows of B. M must be at * least zero. * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the number of columns of B. N must be * at least zero. * Unchanged on exit. * * ALPHA - REAL . * On entry, ALPHA specifies the scalar alpha. When alpha is * zero then A is not referenced and B need not be set before * entry. * Unchanged on exit. * * A - REAL array of DIMENSION ( LDA, k ), where k is m * when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'. * Before entry with UPLO = 'U' or 'u', the leading k by k * upper triangular part of the array A must contain the upper * triangular matrix and the strictly lower triangular part of * A is not referenced. * Before entry with UPLO = 'L' or 'l', the leading k by k * lower triangular part of the array A must contain the lower * triangular matrix and the strictly upper triangular part of * A is not referenced. * Note that when DIAG = 'U' or 'u', the diagonal elements of * A are not referenced either, but are assumed to be unity. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. When SIDE = 'L' or 'l' then * LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' * then LDA must be at least max( 1, n ). * Unchanged on exit. * * B - REAL array of DIMENSION ( LDB, n ). * Before entry, the leading m by n part of the array B must * contain the matrix B, and on exit is overwritten by the * transformed matrix. * * LDB - INTEGER. * On entry, LDB specifies the first dimension of B as declared * in the calling (sub) program. LDB must be at least * max( 1, m ). * Unchanged on exit. * * Further Details * =============== * * Level 3 Blas routine. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * ===================================================================== * * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Local Scalars .. REAL TEMP INTEGER I,INFO,J,K,NROWA LOGICAL LSIDE,NOUNIT,UPPER * .. * .. Parameters .. REAL ONE,ZERO PARAMETER (ONE=1.0E+0,ZERO=0.0E+0) * .. * * Test the input parameters. * LSIDE = LSAME(SIDE,'L') IF (LSIDE) THEN NROWA = M ELSE NROWA = N END IF NOUNIT = LSAME(DIAG,'N') UPPER = LSAME(UPLO,'U') * INFO = 0 IF ((.NOT.LSIDE) .AND. (.NOT.LSAME(SIDE,'R'))) THEN INFO = 1 ELSE IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN INFO = 2 ELSE IF ((.NOT.LSAME(TRANSA,'N')) .AND. + (.NOT.LSAME(TRANSA,'T')) .AND. + (.NOT.LSAME(TRANSA,'C'))) THEN INFO = 3 ELSE IF ((.NOT.LSAME(DIAG,'U')) .AND. (.NOT.LSAME(DIAG,'N'))) THEN INFO = 4 ELSE IF (M.LT.0) THEN INFO = 5 ELSE IF (N.LT.0) THEN INFO = 6 ELSE IF (LDA.LT.MAX(1,NROWA)) THEN INFO = 9 ELSE IF (LDB.LT.MAX(1,M)) THEN INFO = 11 END IF IF (INFO.NE.0) THEN CALL XERBLA('STRMM ',INFO) RETURN END IF * * Quick return if possible. * IF (M.EQ.0 .OR. N.EQ.0) RETURN * * And when alpha.eq.zero. * IF (ALPHA.EQ.ZERO) THEN DO 20 J = 1,N DO 10 I = 1,M B(I,J) = ZERO 10 CONTINUE 20 CONTINUE RETURN END IF * * Start the operations. * IF (LSIDE) THEN IF (LSAME(TRANSA,'N')) THEN * * Form B := alpha*A*B. * IF (UPPER) THEN DO 50 J = 1,N DO 40 K = 1,M IF (B(K,J).NE.ZERO) THEN TEMP = ALPHA*B(K,J) DO 30 I = 1,K - 1 B(I,J) = B(I,J) + TEMP*A(I,K) 30 CONTINUE IF (NOUNIT) TEMP = TEMP*A(K,K) B(K,J) = TEMP END IF 40 CONTINUE 50 CONTINUE ELSE DO 80 J = 1,N DO 70 K = M,1,-1 IF (B(K,J).NE.ZERO) THEN TEMP = ALPHA*B(K,J) B(K,J) = TEMP IF (NOUNIT) B(K,J) = B(K,J)*A(K,K) DO 60 I = K + 1,M B(I,J) = B(I,J) + TEMP*A(I,K) 60 CONTINUE END IF 70 CONTINUE 80 CONTINUE END IF ELSE * * Form B := alpha*A**T*B. * IF (UPPER) THEN DO 110 J = 1,N DO 100 I = M,1,-1 TEMP = B(I,J) IF (NOUNIT) TEMP = TEMP*A(I,I) DO 90 K = 1,I - 1 TEMP = TEMP + A(K,I)*B(K,J) 90 CONTINUE B(I,J) = ALPHA*TEMP 100 CONTINUE 110 CONTINUE ELSE DO 140 J = 1,N DO 130 I = 1,M TEMP = B(I,J) IF (NOUNIT) TEMP = TEMP*A(I,I) DO 120 K = I + 1,M TEMP = TEMP + A(K,I)*B(K,J) 120 CONTINUE B(I,J) = ALPHA*TEMP 130 CONTINUE 140 CONTINUE END IF END IF ELSE IF (LSAME(TRANSA,'N')) THEN * * Form B := alpha*B*A. * IF (UPPER) THEN DO 180 J = N,1,-1 TEMP = ALPHA IF (NOUNIT) TEMP = TEMP*A(J,J) DO 150 I = 1,M B(I,J) = TEMP*B(I,J) 150 CONTINUE DO 170 K = 1,J - 1 IF (A(K,J).NE.ZERO) THEN TEMP = ALPHA*A(K,J) DO 160 I = 1,M B(I,J) = B(I,J) + TEMP*B(I,K) 160 CONTINUE END IF 170 CONTINUE 180 CONTINUE ELSE DO 220 J = 1,N TEMP = ALPHA IF (NOUNIT) TEMP = TEMP*A(J,J) DO 190 I = 1,M B(I,J) = TEMP*B(I,J) 190 CONTINUE DO 210 K = J + 1,N IF (A(K,J).NE.ZERO) THEN TEMP = ALPHA*A(K,J) DO 200 I = 1,M B(I,J) = B(I,J) + TEMP*B(I,K) 200 CONTINUE END IF 210 CONTINUE 220 CONTINUE END IF ELSE * * Form B := alpha*B*A**T. * IF (UPPER) THEN DO 260 K = 1,N DO 240 J = 1,K - 1 IF (A(J,K).NE.ZERO) THEN TEMP = ALPHA*A(J,K) DO 230 I = 1,M B(I,J) = B(I,J) + TEMP*B(I,K) 230 CONTINUE END IF 240 CONTINUE TEMP = ALPHA IF (NOUNIT) TEMP = TEMP*A(K,K) IF (TEMP.NE.ONE) THEN DO 250 I = 1,M B(I,K) = TEMP*B(I,K) 250 CONTINUE END IF 260 CONTINUE ELSE DO 300 K = N,1,-1 DO 280 J = K + 1,N IF (A(J,K).NE.ZERO) THEN TEMP = ALPHA*A(J,K) DO 270 I = 1,M B(I,J) = B(I,J) + TEMP*B(I,K) 270 CONTINUE END IF 280 CONTINUE TEMP = ALPHA IF (NOUNIT) TEMP = TEMP*A(K,K) IF (TEMP.NE.ONE) THEN DO 290 I = 1,M B(I,K) = TEMP*B(I,K) 290 CONTINUE END IF 300 CONTINUE END IF END IF END IF * RETURN * * End of STRMM . * END SUBROUTINE DTBSV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX) * .. Scalar Arguments .. INTEGER INCX,K,LDA,N CHARACTER DIAG,TRANS,UPLO * .. * .. Array Arguments .. DOUBLE PRECISION A(LDA,*),X(*) * .. * * Purpose * ======= * * DTBSV solves one of the systems of equations * * A*x = b, or A**T*x = b, * * where b and x are n element vectors and A is an n by n unit, or * non-unit, upper or lower triangular band matrix, with ( k + 1 ) * diagonals. * * No test for singularity or near-singularity is included in this * routine. Such tests must be performed before calling this routine. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the matrix is an upper or * lower triangular matrix as follows: * * UPLO = 'U' or 'u' A is an upper triangular matrix. * * UPLO = 'L' or 'l' A is a lower triangular matrix. * * Unchanged on exit. * * TRANS - CHARACTER*1. * On entry, TRANS specifies the equations to be solved as * follows: * * TRANS = 'N' or 'n' A*x = b. * * TRANS = 'T' or 't' A**T*x = b. * * TRANS = 'C' or 'c' A**T*x = b. * * Unchanged on exit. * * DIAG - CHARACTER*1. * On entry, DIAG specifies whether or not A is unit * triangular as follows: * * DIAG = 'U' or 'u' A is assumed to be unit triangular. * * DIAG = 'N' or 'n' A is not assumed to be unit * triangular. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * K - INTEGER. * On entry with UPLO = 'U' or 'u', K specifies the number of * super-diagonals of the matrix A. * On entry with UPLO = 'L' or 'l', K specifies the number of * sub-diagonals of the matrix A. * K must satisfy 0 .le. K. * Unchanged on exit. * * A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). * Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) * by n part of the array A must contain the upper triangular * band part of the matrix of coefficients, supplied column by * column, with the leading diagonal of the matrix in row * ( k + 1 ) of the array, the first super-diagonal starting at * position 2 in row k, and so on. The top left k by k triangle * of the array A is not referenced. * The following program segment will transfer an upper * triangular band matrix from conventional full matrix storage * to band storage: * * DO 20, J = 1, N * M = K + 1 - J * DO 10, I = MAX( 1, J - K ), J * A( M + I, J ) = matrix( I, J ) * 10 CONTINUE * 20 CONTINUE * * Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) * by n part of the array A must contain the lower triangular * band part of the matrix of coefficients, supplied column by * column, with the leading diagonal of the matrix in row 1 of * the array, the first sub-diagonal starting at position 1 in * row 2, and so on. The bottom right k by k triangle of the * array A is not referenced. * The following program segment will transfer a lower * triangular band matrix from conventional full matrix storage * to band storage: * * DO 20, J = 1, N * M = 1 - J * DO 10, I = J, MIN( N, J + K ) * A( M + I, J ) = matrix( I, J ) * 10 CONTINUE * 20 CONTINUE * * Note that when DIAG = 'U' or 'u' the elements of the array A * corresponding to the diagonal elements of the matrix are not * referenced, but are assumed to be unity. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * ( k + 1 ). * Unchanged on exit. * * X - DOUBLE PRECISION array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element right-hand side vector b. On exit, X is overwritten * with the solution vector x. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * Further Details * =============== * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO PARAMETER (ZERO=0.0D+0) * .. * .. Local Scalars .. DOUBLE PRECISION TEMP INTEGER I,INFO,IX,J,JX,KPLUS1,KX,L LOGICAL NOUNIT * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX,MIN * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. + .NOT.LSAME(TRANS,'C')) THEN INFO = 2 ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN INFO = 3 ELSE IF (N.LT.0) THEN INFO = 4 ELSE IF (K.LT.0) THEN INFO = 5 ELSE IF (LDA.LT. (K+1)) THEN INFO = 7 ELSE IF (INCX.EQ.0) THEN INFO = 9 END IF IF (INFO.NE.0) THEN CALL XERBLA('DTBSV ',INFO) RETURN END IF * * Quick return if possible. * IF (N.EQ.0) RETURN * NOUNIT = LSAME(DIAG,'N') * * Set up the start point in X if the increment is not unity. This * will be ( N - 1 )*INCX too small for descending loops. * IF (INCX.LE.0) THEN KX = 1 - (N-1)*INCX ELSE IF (INCX.NE.1) THEN KX = 1 END IF * * Start the operations. In this version the elements of A are * accessed by sequentially with one pass through A. * IF (LSAME(TRANS,'N')) THEN * * Form x := inv( A )*x. * IF (LSAME(UPLO,'U')) THEN KPLUS1 = K + 1 IF (INCX.EQ.1) THEN DO 20 J = N,1,-1 IF (X(J).NE.ZERO) THEN L = KPLUS1 - J IF (NOUNIT) X(J) = X(J)/A(KPLUS1,J) TEMP = X(J) DO 10 I = J - 1,MAX(1,J-K),-1 X(I) = X(I) - TEMP*A(L+I,J) 10 CONTINUE END IF 20 CONTINUE ELSE KX = KX + (N-1)*INCX JX = KX DO 40 J = N,1,-1 KX = KX - INCX IF (X(JX).NE.ZERO) THEN IX = KX L = KPLUS1 - J IF (NOUNIT) X(JX) = X(JX)/A(KPLUS1,J) TEMP = X(JX) DO 30 I = J - 1,MAX(1,J-K),-1 X(IX) = X(IX) - TEMP*A(L+I,J) IX = IX - INCX 30 CONTINUE END IF JX = JX - INCX 40 CONTINUE END IF ELSE IF (INCX.EQ.1) THEN DO 60 J = 1,N IF (X(J).NE.ZERO) THEN L = 1 - J IF (NOUNIT) X(J) = X(J)/A(1,J) TEMP = X(J) DO 50 I = J + 1,MIN(N,J+K) X(I) = X(I) - TEMP*A(L+I,J) 50 CONTINUE END IF 60 CONTINUE ELSE JX = KX DO 80 J = 1,N KX = KX + INCX IF (X(JX).NE.ZERO) THEN IX = KX L = 1 - J IF (NOUNIT) X(JX) = X(JX)/A(1,J) TEMP = X(JX) DO 70 I = J + 1,MIN(N,J+K) X(IX) = X(IX) - TEMP*A(L+I,J) IX = IX + INCX 70 CONTINUE END IF JX = JX + INCX 80 CONTINUE END IF END IF ELSE * * Form x := inv( A**T)*x. * IF (LSAME(UPLO,'U')) THEN KPLUS1 = K + 1 IF (INCX.EQ.1) THEN DO 100 J = 1,N TEMP = X(J) L = KPLUS1 - J DO 90 I = MAX(1,J-K),J - 1 TEMP = TEMP - A(L+I,J)*X(I) 90 CONTINUE IF (NOUNIT) TEMP = TEMP/A(KPLUS1,J) X(J) = TEMP 100 CONTINUE ELSE JX = KX DO 120 J = 1,N TEMP = X(JX) IX = KX L = KPLUS1 - J DO 110 I = MAX(1,J-K),J - 1 TEMP = TEMP - A(L+I,J)*X(IX) IX = IX + INCX 110 CONTINUE IF (NOUNIT) TEMP = TEMP/A(KPLUS1,J) X(JX) = TEMP JX = JX + INCX IF (J.GT.K) KX = KX + INCX 120 CONTINUE END IF ELSE IF (INCX.EQ.1) THEN DO 140 J = N,1,-1 TEMP = X(J) L = 1 - J DO 130 I = MIN(N,J+K),J + 1,-1 TEMP = TEMP - A(L+I,J)*X(I) 130 CONTINUE IF (NOUNIT) TEMP = TEMP/A(1,J) X(J) = TEMP 140 CONTINUE ELSE KX = KX + (N-1)*INCX JX = KX DO 160 J = N,1,-1 TEMP = X(JX) IX = KX L = 1 - J DO 150 I = MIN(N,J+K),J + 1,-1 TEMP = TEMP - A(L+I,J)*X(IX) IX = IX - INCX 150 CONTINUE IF (NOUNIT) TEMP = TEMP/A(1,J) X(JX) = TEMP JX = JX - INCX IF ((N-J).GE.K) KX = KX - INCX 160 CONTINUE END IF END IF END IF * RETURN * * End of DTBSV . * END SUBROUTINE STBSV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX) * .. Scalar Arguments .. INTEGER INCX,K,LDA,N CHARACTER DIAG,TRANS,UPLO * .. * .. Array Arguments .. REAL A(LDA,*),X(*) * .. * * Purpose * ======= * * STBSV solves one of the systems of equations * * A*x = b, or A**T*x = b, * * where b and x are n element vectors and A is an n by n unit, or * non-unit, upper or lower triangular band matrix, with ( k + 1 ) * diagonals. * * No test for singularity or near-singularity is included in this * routine. Such tests must be performed before calling this routine. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the matrix is an upper or * lower triangular matrix as follows: * * UPLO = 'U' or 'u' A is an upper triangular matrix. * * UPLO = 'L' or 'l' A is a lower triangular matrix. * * Unchanged on exit. * * TRANS - CHARACTER*1. * On entry, TRANS specifies the equations to be solved as * follows: * * TRANS = 'N' or 'n' A*x = b. * * TRANS = 'T' or 't' A**T*x = b. * * TRANS = 'C' or 'c' A**T*x = b. * * Unchanged on exit. * * DIAG - CHARACTER*1. * On entry, DIAG specifies whether or not A is unit * triangular as follows: * * DIAG = 'U' or 'u' A is assumed to be unit triangular. * * DIAG = 'N' or 'n' A is not assumed to be unit * triangular. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * K - INTEGER. * On entry with UPLO = 'U' or 'u', K specifies the number of * super-diagonals of the matrix A. * On entry with UPLO = 'L' or 'l', K specifies the number of * sub-diagonals of the matrix A. * K must satisfy 0 .le. K. * Unchanged on exit. * * A - REAL array of DIMENSION ( LDA, n ). * Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) * by n part of the array A must contain the upper triangular * band part of the matrix of coefficients, supplied column by * column, with the leading diagonal of the matrix in row * ( k + 1 ) of the array, the first super-diagonal starting at * position 2 in row k, and so on. The top left k by k triangle * of the array A is not referenced. * The following program segment will transfer an upper * triangular band matrix from conventional full matrix storage * to band storage: * * DO 20, J = 1, N * M = K + 1 - J * DO 10, I = MAX( 1, J - K ), J * A( M + I, J ) = matrix( I, J ) * 10 CONTINUE * 20 CONTINUE * * Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) * by n part of the array A must contain the lower triangular * band part of the matrix of coefficients, supplied column by * column, with the leading diagonal of the matrix in row 1 of * the array, the first sub-diagonal starting at position 1 in * row 2, and so on. The bottom right k by k triangle of the * array A is not referenced. * The following program segment will transfer a lower * triangular band matrix from conventional full matrix storage * to band storage: * * DO 20, J = 1, N * M = 1 - J * DO 10, I = J, MIN( N, J + K ) * A( M + I, J ) = matrix( I, J ) * 10 CONTINUE * 20 CONTINUE * * Note that when DIAG = 'U' or 'u' the elements of the array A * corresponding to the diagonal elements of the matrix are not * referenced, but are assumed to be unity. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * ( k + 1 ). * Unchanged on exit. * * X - REAL array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element right-hand side vector b. On exit, X is overwritten * with the solution vector x. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * Further Details * =============== * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. REAL ZERO PARAMETER (ZERO=0.0E+0) * .. * .. Local Scalars .. REAL TEMP INTEGER I,INFO,IX,J,JX,KPLUS1,KX,L LOGICAL NOUNIT * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX,MIN * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. + .NOT.LSAME(TRANS,'C')) THEN INFO = 2 ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN INFO = 3 ELSE IF (N.LT.0) THEN INFO = 4 ELSE IF (K.LT.0) THEN INFO = 5 ELSE IF (LDA.LT. (K+1)) THEN INFO = 7 ELSE IF (INCX.EQ.0) THEN INFO = 9 END IF IF (INFO.NE.0) THEN CALL XERBLA('STBSV ',INFO) RETURN END IF * * Quick return if possible. * IF (N.EQ.0) RETURN * NOUNIT = LSAME(DIAG,'N') * * Set up the start point in X if the increment is not unity. This * will be ( N - 1 )*INCX too small for descending loops. * IF (INCX.LE.0) THEN KX = 1 - (N-1)*INCX ELSE IF (INCX.NE.1) THEN KX = 1 END IF * * Start the operations. In this version the elements of A are * accessed by sequentially with one pass through A. * IF (LSAME(TRANS,'N')) THEN * * Form x := inv( A )*x. * IF (LSAME(UPLO,'U')) THEN KPLUS1 = K + 1 IF (INCX.EQ.1) THEN DO 20 J = N,1,-1 IF (X(J).NE.ZERO) THEN L = KPLUS1 - J IF (NOUNIT) X(J) = X(J)/A(KPLUS1,J) TEMP = X(J) DO 10 I = J - 1,MAX(1,J-K),-1 X(I) = X(I) - TEMP*A(L+I,J) 10 CONTINUE END IF 20 CONTINUE ELSE KX = KX + (N-1)*INCX JX = KX DO 40 J = N,1,-1 KX = KX - INCX IF (X(JX).NE.ZERO) THEN IX = KX L = KPLUS1 - J IF (NOUNIT) X(JX) = X(JX)/A(KPLUS1,J) TEMP = X(JX) DO 30 I = J - 1,MAX(1,J-K),-1 X(IX) = X(IX) - TEMP*A(L+I,J) IX = IX - INCX 30 CONTINUE END IF JX = JX - INCX 40 CONTINUE END IF ELSE IF (INCX.EQ.1) THEN DO 60 J = 1,N IF (X(J).NE.ZERO) THEN L = 1 - J IF (NOUNIT) X(J) = X(J)/A(1,J) TEMP = X(J) DO 50 I = J + 1,MIN(N,J+K) X(I) = X(I) - TEMP*A(L+I,J) 50 CONTINUE END IF 60 CONTINUE ELSE JX = KX DO 80 J = 1,N KX = KX + INCX IF (X(JX).NE.ZERO) THEN IX = KX L = 1 - J IF (NOUNIT) X(JX) = X(JX)/A(1,J) TEMP = X(JX) DO 70 I = J + 1,MIN(N,J+K) X(IX) = X(IX) - TEMP*A(L+I,J) IX = IX + INCX 70 CONTINUE END IF JX = JX + INCX 80 CONTINUE END IF END IF ELSE * * Form x := inv( A**T)*x. * IF (LSAME(UPLO,'U')) THEN KPLUS1 = K + 1 IF (INCX.EQ.1) THEN DO 100 J = 1,N TEMP = X(J) L = KPLUS1 - J DO 90 I = MAX(1,J-K),J - 1 TEMP = TEMP - A(L+I,J)*X(I) 90 CONTINUE IF (NOUNIT) TEMP = TEMP/A(KPLUS1,J) X(J) = TEMP 100 CONTINUE ELSE JX = KX DO 120 J = 1,N TEMP = X(JX) IX = KX L = KPLUS1 - J DO 110 I = MAX(1,J-K),J - 1 TEMP = TEMP - A(L+I,J)*X(IX) IX = IX + INCX 110 CONTINUE IF (NOUNIT) TEMP = TEMP/A(KPLUS1,J) X(JX) = TEMP JX = JX + INCX IF (J.GT.K) KX = KX + INCX 120 CONTINUE END IF ELSE IF (INCX.EQ.1) THEN DO 140 J = N,1,-1 TEMP = X(J) L = 1 - J DO 130 I = MIN(N,J+K),J + 1,-1 TEMP = TEMP - A(L+I,J)*X(I) 130 CONTINUE IF (NOUNIT) TEMP = TEMP/A(1,J) X(J) = TEMP 140 CONTINUE ELSE KX = KX + (N-1)*INCX JX = KX DO 160 J = N,1,-1 TEMP = X(JX) IX = KX L = 1 - J DO 150 I = MIN(N,J+K),J + 1,-1 TEMP = TEMP - A(L+I,J)*X(IX) IX = IX - INCX 150 CONTINUE IF (NOUNIT) TEMP = TEMP/A(1,J) X(JX) = TEMP JX = JX - INCX IF ((N-J).GE.K) KX = KX - INCX 160 CONTINUE END IF END IF END IF * RETURN * * End of STBSV . * END SUBROUTINE DTPMV ( UPLO, TRANS, DIAG, N, AP, X, INCX ) * .. Scalar Arguments .. INTEGER INCX, N CHARACTER*1 DIAG, TRANS, UPLO * .. Array Arguments .. DOUBLE PRECISION AP( * ), X( * ) * .. * * Purpose * ======= * * DTPMV performs one of the matrix-vector operations * * x := A*x, or x := A'*x, * * where x is an n element vector and A is an n by n unit, or non-unit, * upper or lower triangular matrix, supplied in packed form. * * Parameters * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the matrix is an upper or * lower triangular matrix as follows: * * UPLO = 'U' or 'u' A is an upper triangular matrix. * * UPLO = 'L' or 'l' A is a lower triangular matrix. * * Unchanged on exit. * * TRANS - CHARACTER*1. * On entry, TRANS specifies the operation to be performed as * follows: * * TRANS = 'N' or 'n' x := A*x. * * TRANS = 'T' or 't' x := A'*x. * * TRANS = 'C' or 'c' x := A'*x. * * Unchanged on exit. * * DIAG - CHARACTER*1. * On entry, DIAG specifies whether or not A is unit * triangular as follows: * * DIAG = 'U' or 'u' A is assumed to be unit triangular. * * DIAG = 'N' or 'n' A is not assumed to be unit * triangular. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * AP - DOUBLE PRECISION array of DIMENSION at least * ( ( n*( n + 1 ) )/2 ). * Before entry with UPLO = 'U' or 'u', the array AP must * contain the upper triangular matrix packed sequentially, * column by column, so that AP( 1 ) contains a( 1, 1 ), * AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) * respectively, and so on. * Before entry with UPLO = 'L' or 'l', the array AP must * contain the lower triangular matrix packed sequentially, * column by column, so that AP( 1 ) contains a( 1, 1 ), * AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) * respectively, and so on. * Note that when DIAG = 'U' or 'u', the diagonal elements of * A are not referenced, but are assumed to be unity. * Unchanged on exit. * * X - DOUBLE PRECISION array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element vector x. On exit, X is overwritten with the * tranformed vector x. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * * .. Parameters .. DOUBLE PRECISION ZERO PARAMETER ( ZERO = 0.0D+0 ) * .. Local Scalars .. DOUBLE PRECISION TEMP INTEGER I, INFO, IX, J, JX, K, KK, KX LOGICAL NOUNIT * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 IF ( .NOT.LSAME( UPLO , 'U' ).AND. $ .NOT.LSAME( UPLO , 'L' ) )THEN INFO = 1 ELSE IF( .NOT.LSAME( TRANS, 'N' ).AND. $ .NOT.LSAME( TRANS, 'T' ).AND. $ .NOT.LSAME( TRANS, 'C' ) )THEN INFO = 2 ELSE IF( .NOT.LSAME( DIAG , 'U' ).AND. $ .NOT.LSAME( DIAG , 'N' ) )THEN INFO = 3 ELSE IF( N.LT.0 )THEN INFO = 4 ELSE IF( INCX.EQ.0 )THEN INFO = 7 END IF IF( INFO.NE.0 )THEN CALL XERBLA( 'DTPMV ', INFO ) RETURN END IF * * Quick return if possible. * IF( N.EQ.0 ) $ RETURN * NOUNIT = LSAME( DIAG, 'N' ) * * Set up the start point in X if the increment is not unity. This * will be ( N - 1 )*INCX too small for descending loops. * IF( INCX.LE.0 )THEN KX = 1 - ( N - 1 )*INCX ELSE IF( INCX.NE.1 )THEN KX = 1 END IF * * Start the operations. In this version the elements of AP are * accessed sequentially with one pass through AP. * IF( LSAME( TRANS, 'N' ) )THEN * * Form x:= A*x. * IF( LSAME( UPLO, 'U' ) )THEN KK =1 IF( INCX.EQ.1 )THEN DO 20, J = 1, N IF( X( J ).NE.ZERO )THEN TEMP = X( J ) K = KK DO 10, I = 1, J - 1 X( I ) = X( I ) + TEMP*AP( K ) K = K + 1 10 CONTINUE IF( NOUNIT ) $ X( J ) = X( J )*AP( KK + J - 1 ) END IF KK = KK + J 20 CONTINUE ELSE JX = KX DO 40, J = 1, N IF( X( JX ).NE.ZERO )THEN TEMP = X( JX ) IX = KX DO 30, K = KK, KK + J - 2 X( IX ) = X( IX ) + TEMP*AP( K ) IX = IX + INCX 30 CONTINUE IF( NOUNIT ) $ X( JX ) = X( JX )*AP( KK + J - 1 ) END IF JX = JX + INCX KK = KK + J 40 CONTINUE END IF ELSE KK = ( N*( N + 1 ) )/2 IF( INCX.EQ.1 )THEN DO 60, J = N, 1, -1 IF( X( J ).NE.ZERO )THEN TEMP = X( J ) K = KK DO 50, I = N, J + 1, -1 X( I ) = X( I ) + TEMP*AP( K ) K = K - 1 50 CONTINUE IF( NOUNIT ) $ X( J ) = X( J )*AP( KK - N + J ) END IF KK = KK - ( N - J + 1 ) 60 CONTINUE ELSE KX = KX + ( N - 1 )*INCX JX = KX DO 80, J = N, 1, -1 IF( X( JX ).NE.ZERO )THEN TEMP = X( JX ) IX = KX DO 70, K = KK, KK - ( N - ( J + 1 ) ), -1 X( IX ) = X( IX ) + TEMP*AP( K ) IX = IX - INCX 70 CONTINUE IF( NOUNIT ) $ X( JX ) = X( JX )*AP( KK - N + J ) END IF JX = JX - INCX KK = KK - ( N - J + 1 ) 80 CONTINUE END IF END IF ELSE * * Form x := A'*x. * IF( LSAME( UPLO, 'U' ) )THEN KK = ( N*( N + 1 ) )/2 IF( INCX.EQ.1 )THEN DO 100, J = N, 1, -1 TEMP = X( J ) IF( NOUNIT ) $ TEMP = TEMP*AP( KK ) K = KK - 1 DO 90, I = J - 1, 1, -1 TEMP = TEMP + AP( K )*X( I ) K = K - 1 90 CONTINUE X( J ) = TEMP KK = KK - J 100 CONTINUE ELSE JX = KX + ( N - 1 )*INCX DO 120, J = N, 1, -1 TEMP = X( JX ) IX = JX IF( NOUNIT ) $ TEMP = TEMP*AP( KK ) DO 110, K = KK - 1, KK - J + 1, -1 IX = IX - INCX TEMP = TEMP + AP( K )*X( IX ) 110 CONTINUE X( JX ) = TEMP JX = JX - INCX KK = KK - J 120 CONTINUE END IF ELSE KK = 1 IF( INCX.EQ.1 )THEN DO 140, J = 1, N TEMP = X( J ) IF( NOUNIT ) $ TEMP = TEMP*AP( KK ) K = KK + 1 DO 130, I = J + 1, N TEMP = TEMP + AP( K )*X( I ) K = K + 1 130 CONTINUE X( J ) = TEMP KK = KK + ( N - J + 1 ) 140 CONTINUE ELSE JX = KX DO 160, J = 1, N TEMP = X( JX ) IX = JX IF( NOUNIT ) $ TEMP = TEMP*AP( KK ) DO 150, K = KK + 1, KK + N - J IX = IX + INCX TEMP = TEMP + AP( K )*X( IX ) 150 CONTINUE X( JX ) = TEMP JX = JX + INCX KK = KK + ( N - J + 1 ) 160 CONTINUE END IF END IF END IF * RETURN * * End of DTPMV . * END SUBROUTINE STPMV ( UPLO, TRANS, DIAG, N, AP, X, INCX ) * .. Scalar Arguments .. INTEGER INCX, N CHARACTER*1 DIAG, TRANS, UPLO * .. Array Arguments .. REAL AP( * ), X( * ) * .. * * Purpose * ======= * * STPMV performs one of the matrix-vector operations * * x := A*x, or x := A'*x, * * where x is an n element vector and A is an n by n unit, or non-unit, * upper or lower triangular matrix, supplied in packed form. * * Parameters * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the matrix is an upper or * lower triangular matrix as follows: * * UPLO = 'U' or 'u' A is an upper triangular matrix. * * UPLO = 'L' or 'l' A is a lower triangular matrix. * * Unchanged on exit. * * TRANS - CHARACTER*1. * On entry, TRANS specifies the operation to be performed as * follows: * * TRANS = 'N' or 'n' x := A*x. * * TRANS = 'T' or 't' x := A'*x. * * TRANS = 'C' or 'c' x := A'*x. * * Unchanged on exit. * * DIAG - CHARACTER*1. * On entry, DIAG specifies whether or not A is unit * triangular as follows: * * DIAG = 'U' or 'u' A is assumed to be unit triangular. * * DIAG = 'N' or 'n' A is not assumed to be unit * triangular. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * AP - REAL array of DIMENSION at least * ( ( n*( n + 1 ) )/2 ). * Before entry with UPLO = 'U' or 'u', the array AP must * contain the upper triangular matrix packed sequentially, * column by column, so that AP( 1 ) contains a( 1, 1 ), * AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) * respectively, and so on. * Before entry with UPLO = 'L' or 'l', the array AP must * contain the lower triangular matrix packed sequentially, * column by column, so that AP( 1 ) contains a( 1, 1 ), * AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) * respectively, and so on. * Note that when DIAG = 'U' or 'u', the diagonal elements of * A are not referenced, but are assumed to be unity. * Unchanged on exit. * * X - REAL array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element vector x. On exit, X is overwritten with the * tranformed vector x. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * * .. Parameters .. REAL ZERO PARAMETER ( ZERO = 0.0E+0 ) * .. Local Scalars .. REAL TEMP INTEGER I, INFO, IX, J, JX, K, KK, KX LOGICAL NOUNIT * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 IF ( .NOT.LSAME( UPLO , 'U' ).AND. $ .NOT.LSAME( UPLO , 'L' ) )THEN INFO = 1 ELSE IF( .NOT.LSAME( TRANS, 'N' ).AND. $ .NOT.LSAME( TRANS, 'T' ).AND. $ .NOT.LSAME( TRANS, 'C' ) )THEN INFO = 2 ELSE IF( .NOT.LSAME( DIAG , 'U' ).AND. $ .NOT.LSAME( DIAG , 'N' ) )THEN INFO = 3 ELSE IF( N.LT.0 )THEN INFO = 4 ELSE IF( INCX.EQ.0 )THEN INFO = 7 END IF IF( INFO.NE.0 )THEN CALL XERBLA( 'STPMV ', INFO ) RETURN END IF * * Quick return if possible. * IF( N.EQ.0 ) $ RETURN * NOUNIT = LSAME( DIAG, 'N' ) * * Set up the start point in X if the increment is not unity. This * will be ( N - 1 )*INCX too small for descending loops. * IF( INCX.LE.0 )THEN KX = 1 - ( N - 1 )*INCX ELSE IF( INCX.NE.1 )THEN KX = 1 END IF * * Start the operations. In this version the elements of AP are * accessed sequentially with one pass through AP. * IF( LSAME( TRANS, 'N' ) )THEN * * Form x:= A*x. * IF( LSAME( UPLO, 'U' ) )THEN KK =1 IF( INCX.EQ.1 )THEN DO 20, J = 1, N IF( X( J ).NE.ZERO )THEN TEMP = X( J ) K = KK DO 10, I = 1, J - 1 X( I ) = X( I ) + TEMP*AP( K ) K = K + 1 10 CONTINUE IF( NOUNIT ) $ X( J ) = X( J )*AP( KK + J - 1 ) END IF KK = KK + J 20 CONTINUE ELSE JX = KX DO 40, J = 1, N IF( X( JX ).NE.ZERO )THEN TEMP = X( JX ) IX = KX DO 30, K = KK, KK + J - 2 X( IX ) = X( IX ) + TEMP*AP( K ) IX = IX + INCX 30 CONTINUE IF( NOUNIT ) $ X( JX ) = X( JX )*AP( KK + J - 1 ) END IF JX = JX + INCX KK = KK + J 40 CONTINUE END IF ELSE KK = ( N*( N + 1 ) )/2 IF( INCX.EQ.1 )THEN DO 60, J = N, 1, -1 IF( X( J ).NE.ZERO )THEN TEMP = X( J ) K = KK DO 50, I = N, J + 1, -1 X( I ) = X( I ) + TEMP*AP( K ) K = K - 1 50 CONTINUE IF( NOUNIT ) $ X( J ) = X( J )*AP( KK - N + J ) END IF KK = KK - ( N - J + 1 ) 60 CONTINUE ELSE KX = KX + ( N - 1 )*INCX JX = KX DO 80, J = N, 1, -1 IF( X( JX ).NE.ZERO )THEN TEMP = X( JX ) IX = KX DO 70, K = KK, KK - ( N - ( J + 1 ) ), -1 X( IX ) = X( IX ) + TEMP*AP( K ) IX = IX - INCX 70 CONTINUE IF( NOUNIT ) $ X( JX ) = X( JX )*AP( KK - N + J ) END IF JX = JX - INCX KK = KK - ( N - J + 1 ) 80 CONTINUE END IF END IF ELSE * * Form x := A'*x. * IF( LSAME( UPLO, 'U' ) )THEN KK = ( N*( N + 1 ) )/2 IF( INCX.EQ.1 )THEN DO 100, J = N, 1, -1 TEMP = X( J ) IF( NOUNIT ) $ TEMP = TEMP*AP( KK ) K = KK - 1 DO 90, I = J - 1, 1, -1 TEMP = TEMP + AP( K )*X( I ) K = K - 1 90 CONTINUE X( J ) = TEMP KK = KK - J 100 CONTINUE ELSE JX = KX + ( N - 1 )*INCX DO 120, J = N, 1, -1 TEMP = X( JX ) IX = JX IF( NOUNIT ) $ TEMP = TEMP*AP( KK ) DO 110, K = KK - 1, KK - J + 1, -1 IX = IX - INCX TEMP = TEMP + AP( K )*X( IX ) 110 CONTINUE X( JX ) = TEMP JX = JX - INCX KK = KK - J 120 CONTINUE END IF ELSE KK = 1 IF( INCX.EQ.1 )THEN DO 140, J = 1, N TEMP = X( J ) IF( NOUNIT ) $ TEMP = TEMP*AP( KK ) K = KK + 1 DO 130, I = J + 1, N TEMP = TEMP + AP( K )*X( I ) K = K + 1 130 CONTINUE X( J ) = TEMP KK = KK + ( N - J + 1 ) 140 CONTINUE ELSE JX = KX DO 160, J = 1, N TEMP = X( JX ) IX = JX IF( NOUNIT ) $ TEMP = TEMP*AP( KK ) DO 150, K = KK + 1, KK + N - J IX = IX + INCX TEMP = TEMP + AP( K )*X( IX ) 150 CONTINUE X( JX ) = TEMP JX = JX + INCX KK = KK + ( N - J + 1 ) 160 CONTINUE END IF END IF END IF * RETURN * * End of STPMV . * END DOUBLE PRECISION FUNCTION dznrm2(N,X,INCX) * * -- Reference BLAS level1 routine (version 3.4.0) -- * -- Reference BLAS is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2011 * * .. Scalar Arguments .. INTEGER incx,n * .. * .. Array Arguments .. COMPLEX*16 x(*) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION one,zero parameter(one=1.0d+0,zero=0.0d+0) * .. * .. Local Scalars .. DOUBLE PRECISION norm,scale,ssq,temp INTEGER ix * .. * .. Intrinsic Functions .. INTRINSIC abs,dble,dimag,sqrt * .. IF (n.LT.1 .OR. incx.LT.1) THEN norm = zero ELSE scale = zero ssq = one * The following loop is equivalent to this call to the LAPACK * auxiliary routine: * CALL ZLASSQ( N, X, INCX, SCALE, SSQ ) * DO 10 ix = 1,1 + (n-1)*incx,incx IF (dble(x(ix)).NE.zero) THEN temp = abs(dble(x(ix))) IF (scale.LT.temp) THEN ssq = one + ssq* (scale/temp)**2 scale = temp ELSE ssq = ssq + (temp/scale)**2 END IF END IF IF (dimag(x(ix)).NE.zero) THEN temp = abs(dimag(x(ix))) IF (scale.LT.temp) THEN ssq = one + ssq* (scale/temp)**2 scale = temp ELSE ssq = ssq + (temp/scale)**2 END IF END IF 10 CONTINUE norm = scale*sqrt(ssq) END IF * dznrm2 = norm RETURN * * End of DZNRM2. * END SUBROUTINE zcopy(N,ZX,INCX,ZY,INCY) * * -- Reference BLAS level1 routine (version 3.4.0) -- * -- Reference BLAS is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2011 * * .. Scalar Arguments .. INTEGER incx,incy,n * .. * .. Array Arguments .. COMPLEX*16 zx(*),zy(*) * .. * * ===================================================================== * * .. Local Scalars .. INTEGER i,ix,iy * .. IF (n.LE.0) RETURN IF (incx.EQ.1 .AND. incy.EQ.1) THEN * * code for both increments equal to 1 * DO i = 1,n zy(i) = zx(i) END DO ELSE * * code for unequal increments or equal increments * not equal to 1 * ix = 1 iy = 1 IF (incx.LT.0) ix = (-n+1)*incx + 1 IF (incy.LT.0) iy = (-n+1)*incy + 1 DO i = 1,n zy(iy) = zx(ix) ix = ix + incx iy = iy + incy END DO END IF RETURN END SUBROUTINE ztrmm(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB) * * -- Reference BLAS level3 routine (version 3.4.0) -- * -- Reference BLAS is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2011 * * .. Scalar Arguments .. COMPLEX*16 alpha INTEGER lda,ldb,m,n CHARACTER diag,side,transa,uplo * .. * .. Array Arguments .. COMPLEX*16 a(lda,*),b(ldb,*) * .. * * ===================================================================== * * .. External Functions .. LOGICAL lsame EXTERNAL lsame * .. * .. External Subroutines .. EXTERNAL xerbla * .. * .. Intrinsic Functions .. INTRINSIC dconjg,max * .. * .. Local Scalars .. COMPLEX*16 temp INTEGER i,info,j,k,nrowa LOGICAL lside,noconj,nounit,upper * .. * .. Parameters .. COMPLEX*16 one parameter(one= (1.0d+0,0.0d+0)) COMPLEX*16 zero parameter(zero= (0.0d+0,0.0d+0)) * .. * * Test the input parameters. * lside = lsame(side,'L') IF (lside) THEN nrowa = m ELSE nrowa = n END IF noconj = lsame(transa,'T') nounit = lsame(diag,'N') upper = lsame(uplo,'U') * info = 0 IF ((.NOT.lside) .AND. (.NOT.lsame(side,'R'))) THEN info = 1 ELSE IF ((.NOT.upper) .AND. (.NOT.lsame(uplo,'L'))) THEN info = 2 ELSE IF ((.NOT.lsame(transa,'N')) .AND. + (.NOT.lsame(transa,'T')) .AND. + (.NOT.lsame(transa,'C'))) THEN info = 3 ELSE IF ((.NOT.lsame(diag,'U')) .AND. (.NOT.lsame(diag,'N'))) THEN info = 4 ELSE IF (m.LT.0) THEN info = 5 ELSE IF (n.LT.0) THEN info = 6 ELSE IF (lda.LT.max(1,nrowa)) THEN info = 9 ELSE IF (ldb.LT.max(1,m)) THEN info = 11 END IF IF (info.NE.0) THEN CALL xerbla('ZTRMM ',info) RETURN END IF * * Quick return if possible. * IF (m.EQ.0 .OR. n.EQ.0) RETURN * * And when alpha.eq.zero. * IF (alpha.EQ.zero) THEN DO 20 j = 1,n DO 10 i = 1,m b(i,j) = zero 10 CONTINUE 20 CONTINUE RETURN END IF * * Start the operations. * IF (lside) THEN IF (lsame(transa,'N')) THEN * * Form B := alpha*A*B. * IF (upper) THEN DO 50 j = 1,n DO 40 k = 1,m IF (b(k,j).NE.zero) THEN temp = alpha*b(k,j) DO 30 i = 1,k - 1 b(i,j) = b(i,j) + temp*a(i,k) 30 CONTINUE IF (nounit) temp = temp*a(k,k) b(k,j) = temp END IF 40 CONTINUE 50 CONTINUE ELSE DO 80 j = 1,n DO 70 k = m,1,-1 IF (b(k,j).NE.zero) THEN temp = alpha*b(k,j) b(k,j) = temp IF (nounit) b(k,j) = b(k,j)*a(k,k) DO 60 i = k + 1,m b(i,j) = b(i,j) + temp*a(i,k) 60 CONTINUE END IF 70 CONTINUE 80 CONTINUE END IF ELSE * * Form B := alpha*A**T*B or B := alpha*A**H*B. * IF (upper) THEN DO 120 j = 1,n DO 110 i = m,1,-1 temp = b(i,j) IF (noconj) THEN IF (nounit) temp = temp*a(i,i) DO 90 k = 1,i - 1 temp = temp + a(k,i)*b(k,j) 90 CONTINUE ELSE IF (nounit) temp = temp*dconjg(a(i,i)) DO 100 k = 1,i - 1 temp = temp + dconjg(a(k,i))*b(k,j) 100 CONTINUE END IF b(i,j) = alpha*temp 110 CONTINUE 120 CONTINUE ELSE DO 160 j = 1,n DO 150 i = 1,m temp = b(i,j) IF (noconj) THEN IF (nounit) temp = temp*a(i,i) DO 130 k = i + 1,m temp = temp + a(k,i)*b(k,j) 130 CONTINUE ELSE IF (nounit) temp = temp*dconjg(a(i,i)) DO 140 k = i + 1,m temp = temp + dconjg(a(k,i))*b(k,j) 140 CONTINUE END IF b(i,j) = alpha*temp 150 CONTINUE 160 CONTINUE END IF END IF ELSE IF (lsame(transa,'N')) THEN * * Form B := alpha*B*A. * IF (upper) THEN DO 200 j = n,1,-1 temp = alpha IF (nounit) temp = temp*a(j,j) DO 170 i = 1,m b(i,j) = temp*b(i,j) 170 CONTINUE DO 190 k = 1,j - 1 IF (a(k,j).NE.zero) THEN temp = alpha*a(k,j) DO 180 i = 1,m b(i,j) = b(i,j) + temp*b(i,k) 180 CONTINUE END IF 190 CONTINUE 200 CONTINUE ELSE DO 240 j = 1,n temp = alpha IF (nounit) temp = temp*a(j,j) DO 210 i = 1,m b(i,j) = temp*b(i,j) 210 CONTINUE DO 230 k = j + 1,n IF (a(k,j).NE.zero) THEN temp = alpha*a(k,j) DO 220 i = 1,m b(i,j) = b(i,j) + temp*b(i,k) 220 CONTINUE END IF 230 CONTINUE 240 CONTINUE END IF ELSE * * Form B := alpha*B*A**T or B := alpha*B*A**H. * IF (upper) THEN DO 280 k = 1,n DO 260 j = 1,k - 1 IF (a(j,k).NE.zero) THEN IF (noconj) THEN temp = alpha*a(j,k) ELSE temp = alpha*dconjg(a(j,k)) END IF DO 250 i = 1,m b(i,j) = b(i,j) + temp*b(i,k) 250 CONTINUE END IF 260 CONTINUE temp = alpha IF (nounit) THEN IF (noconj) THEN temp = temp*a(k,k) ELSE temp = temp*dconjg(a(k,k)) END IF END IF IF (temp.NE.one) THEN DO 270 i = 1,m b(i,k) = temp*b(i,k) 270 CONTINUE END IF 280 CONTINUE ELSE DO 320 k = n,1,-1 DO 300 j = k + 1,n IF (a(j,k).NE.zero) THEN IF (noconj) THEN temp = alpha*a(j,k) ELSE temp = alpha*dconjg(a(j,k)) END IF DO 290 i = 1,m b(i,j) = b(i,j) + temp*b(i,k) 290 CONTINUE END IF 300 CONTINUE temp = alpha IF (nounit) THEN IF (noconj) THEN temp = temp*a(k,k) ELSE temp = temp*dconjg(a(k,k)) END IF END IF IF (temp.NE.one) THEN DO 310 i = 1,m b(i,k) = temp*b(i,k) 310 CONTINUE END IF 320 CONTINUE END IF END IF END IF * RETURN * * End of ZTRMM . * END SUBROUTINE ztrmv(UPLO,TRANS,DIAG,N,A,LDA,X,INCX) * * -- Reference BLAS level2 routine (version 3.4.0) -- * -- Reference BLAS is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2011 * * .. Scalar Arguments .. INTEGER incx,lda,n CHARACTER diag,trans,uplo * .. * .. Array Arguments .. COMPLEX*16 a(lda,*),x(*) * .. * * ===================================================================== * * .. Parameters .. COMPLEX*16 zero parameter(zero= (0.0d+0,0.0d+0)) * .. * .. Local Scalars .. COMPLEX*16 temp INTEGER i,info,ix,j,jx,kx LOGICAL noconj,nounit * .. * .. External Functions .. LOGICAL lsame EXTERNAL lsame * .. * .. External Subroutines .. EXTERNAL xerbla * .. * .. Intrinsic Functions .. INTRINSIC dconjg,max * .. * * Test the input parameters. * info = 0 IF (.NOT.lsame(uplo,'U') .AND. .NOT.lsame(uplo,'L')) THEN info = 1 ELSE IF (.NOT.lsame(trans,'N') .AND. .NOT.lsame(trans,'T') .AND. + .NOT.lsame(trans,'C')) THEN info = 2 ELSE IF (.NOT.lsame(diag,'U') .AND. .NOT.lsame(diag,'N')) THEN info = 3 ELSE IF (n.LT.0) THEN info = 4 ELSE IF (lda.LT.max(1,n)) THEN info = 6 ELSE IF (incx.EQ.0) THEN info = 8 END IF IF (info.NE.0) THEN CALL xerbla('ZTRMV ',info) RETURN END IF * * Quick return if possible. * IF (n.EQ.0) RETURN * noconj = lsame(trans,'T') nounit = lsame(diag,'N') * * Set up the start point in X if the increment is not unity. This * will be ( N - 1 )*INCX too small for descending loops. * IF (incx.LE.0) THEN kx = 1 - (n-1)*incx ELSE IF (incx.NE.1) THEN kx = 1 END IF * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through A. * IF (lsame(trans,'N')) THEN * * Form x := A*x. * IF (lsame(uplo,'U')) THEN IF (incx.EQ.1) THEN DO 20 j = 1,n IF (x(j).NE.zero) THEN temp = x(j) DO 10 i = 1,j - 1 x(i) = x(i) + temp*a(i,j) 10 CONTINUE IF (nounit) x(j) = x(j)*a(j,j) END IF 20 CONTINUE ELSE jx = kx DO 40 j = 1,n IF (x(jx).NE.zero) THEN temp = x(jx) ix = kx DO 30 i = 1,j - 1 x(ix) = x(ix) + temp*a(i,j) ix = ix + incx 30 CONTINUE IF (nounit) x(jx) = x(jx)*a(j,j) END IF jx = jx + incx 40 CONTINUE END IF ELSE IF (incx.EQ.1) THEN DO 60 j = n,1,-1 IF (x(j).NE.zero) THEN temp = x(j) DO 50 i = n,j + 1,-1 x(i) = x(i) + temp*a(i,j) 50 CONTINUE IF (nounit) x(j) = x(j)*a(j,j) END IF 60 CONTINUE ELSE kx = kx + (n-1)*incx jx = kx DO 80 j = n,1,-1 IF (x(jx).NE.zero) THEN temp = x(jx) ix = kx DO 70 i = n,j + 1,-1 x(ix) = x(ix) + temp*a(i,j) ix = ix - incx 70 CONTINUE IF (nounit) x(jx) = x(jx)*a(j,j) END IF jx = jx - incx 80 CONTINUE END IF END IF ELSE * * Form x := A**T*x or x := A**H*x. * IF (lsame(uplo,'U')) THEN IF (incx.EQ.1) THEN DO 110 j = n,1,-1 temp = x(j) IF (noconj) THEN IF (nounit) temp = temp*a(j,j) DO 90 i = j - 1,1,-1 temp = temp + a(i,j)*x(i) 90 CONTINUE ELSE IF (nounit) temp = temp*dconjg(a(j,j)) DO 100 i = j - 1,1,-1 temp = temp + dconjg(a(i,j))*x(i) 100 CONTINUE END IF x(j) = temp 110 CONTINUE ELSE jx = kx + (n-1)*incx DO 140 j = n,1,-1 temp = x(jx) ix = jx IF (noconj) THEN IF (nounit) temp = temp*a(j,j) DO 120 i = j - 1,1,-1 ix = ix - incx temp = temp + a(i,j)*x(ix) 120 CONTINUE ELSE IF (nounit) temp = temp*dconjg(a(j,j)) DO 130 i = j - 1,1,-1 ix = ix - incx temp = temp + dconjg(a(i,j))*x(ix) 130 CONTINUE END IF x(jx) = temp jx = jx - incx 140 CONTINUE END IF ELSE IF (incx.EQ.1) THEN DO 170 j = 1,n temp = x(j) IF (noconj) THEN IF (nounit) temp = temp*a(j,j) DO 150 i = j + 1,n temp = temp + a(i,j)*x(i) 150 CONTINUE ELSE IF (nounit) temp = temp*dconjg(a(j,j)) DO 160 i = j + 1,n temp = temp + dconjg(a(i,j))*x(i) 160 CONTINUE END IF x(j) = temp 170 CONTINUE ELSE jx = kx DO 200 j = 1,n temp = x(jx) ix = jx IF (noconj) THEN IF (nounit) temp = temp*a(j,j) DO 180 i = j + 1,n ix = ix + incx temp = temp + a(i,j)*x(ix) 180 CONTINUE ELSE IF (nounit) temp = temp*dconjg(a(j,j)) DO 190 i = j + 1,n ix = ix + incx temp = temp + dconjg(a(i,j))*x(ix) 190 CONTINUE END IF x(jx) = temp jx = jx + incx 200 CONTINUE END IF END IF END IF * RETURN * * End of ZTRMV . * END SUBROUTINE zgerc(M,N,ALPHA,X,INCX,Y,INCY,A,LDA) * * -- Reference BLAS level2 routine (version 3.4.0) -- * -- Reference BLAS is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2011 * * .. Scalar Arguments .. COMPLEX*16 alpha INTEGER incx,incy,lda,m,n * .. * .. Array Arguments .. COMPLEX*16 a(lda,*),x(*),y(*) * .. * * ===================================================================== * * .. Parameters .. COMPLEX*16 zero parameter(zero= (0.0d+0,0.0d+0)) * .. * .. Local Scalars .. COMPLEX*16 temp INTEGER i,info,ix,j,jy,kx * .. * .. External Subroutines .. EXTERNAL xerbla * .. * .. Intrinsic Functions .. INTRINSIC dconjg,max * .. * * Test the input parameters. * info = 0 IF (m.LT.0) THEN info = 1 ELSE IF (n.LT.0) THEN info = 2 ELSE IF (incx.EQ.0) THEN info = 5 ELSE IF (incy.EQ.0) THEN info = 7 ELSE IF (lda.LT.max(1,m)) THEN info = 9 END IF IF (info.NE.0) THEN CALL xerbla('ZGERC ',info) RETURN END IF * * Quick return if possible. * IF ((m.EQ.0) .OR. (n.EQ.0) .OR. (alpha.EQ.zero)) RETURN * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through A. * IF (incy.GT.0) THEN jy = 1 ELSE jy = 1 - (n-1)*incy END IF IF (incx.EQ.1) THEN DO 20 j = 1,n IF (y(jy).NE.zero) THEN temp = alpha*dconjg(y(jy)) DO 10 i = 1,m a(i,j) = a(i,j) + x(i)*temp 10 CONTINUE END IF jy = jy + incy 20 CONTINUE ELSE IF (incx.GT.0) THEN kx = 1 ELSE kx = 1 - (m-1)*incx END IF DO 40 j = 1,n IF (y(jy).NE.zero) THEN temp = alpha*dconjg(y(jy)) ix = kx DO 30 i = 1,m a(i,j) = a(i,j) + x(ix)*temp ix = ix + incx 30 CONTINUE END IF jy = jy + incy 40 CONTINUE END IF * RETURN * * End of ZGERC . * END LOGICAL FUNCTION LSAME ( CA, CB ) * .. Scalar Arguments .. CHARACTER*1 CA, CB * .. * * Purpose * ======= * * LSAME tests if CA is the same letter as CB regardless of case. * * N.B. This version of the routine is only correct for ASCII code. * Installers must modify the routine for other character-codes. * * For EBCDIC systems the constant IOFF must be changed to -64. * For CDC systems using 6-12 bit representations, the system- * specific code in comments must be activated. * * Parameters * ========== * * CA - CHARACTER*1 * CB - CHARACTER*1 * On entry, CA and CB specify characters to be compared. * Unchanged on exit. * * * Auxiliary routine for Level 2 Blas. * * -- Written on 11-October-1988. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, Nag Central Office. * * .. Parameters .. INTEGER IOFF PARAMETER ( IOFF=32 ) * .. Intrinsic Functions .. INTRINSIC ICHAR * .. Executable Statements .. * * Test if the characters are equal * LSAME = CA .EQ. CB * * Now test for equivalence * IF ( .NOT.LSAME ) THEN LSAME = ICHAR(CA) - IOFF .EQ. ICHAR(CB) END IF IF ( .NOT.LSAME ) THEN LSAME = ICHAR(CA) .EQ. ICHAR(CB) - IOFF END IF * RETURN * * The following comments contain code for CDC systems using 6-12 bit * representations. * * .. Parameters .. * INTEGER ICIRFX * PARAMETER ( ICIRFX=62 ) * .. Scalar Arguments .. * CHARACTER*1 CB * .. Array Arguments .. * CHARACTER*1 CA(*) * .. Local Scalars .. * INTEGER IVAL * .. Intrinsic Functions .. * INTRINSIC ICHAR, CHAR * .. Executable Statements .. * * See if the first character in string CA equals string CB. * * LSAME = CA(1) .EQ. CB .AND. CA(1) .NE. CHAR(ICIRFX) * * IF (LSAME) RETURN * * The characters are not identical. Now check them for equivalence. * Look for the 'escape' character, circumflex, followed by the * letter. * * IVAL = ICHAR(CA(2)) * IF (IVAL.GE.ICHAR('A') .AND. IVAL.LE.ICHAR('Z')) THEN * LSAME = CA(1) .EQ. CHAR(ICIRFX) .AND. CA(2) .EQ. CB * END IF * * RETURN * * End of LSAME. * END SUBROUTINE XERBLA( SRNAME, INFO ) * * -- LAPACK auxiliary routine (version 2.0) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * September 30, 1994 * * .. Scalar Arguments .. CHARACTER*6 SRNAME INTEGER INFO * .. * * Purpose * ======= * * XERBLA is an error handler for the LAPACK routines. * It is called by an LAPACK routine if an input parameter has an * invalid value. A message is printed and execution stops. * * Installers may consider modifying the STOP statement in order to * call system-specific exception-handling facilities. * * Arguments * ========= * * SRNAME (input) CHARACTER*6 * The name of the routine which called XERBLA. * * INFO (input) INTEGER * The position of the invalid parameter in the parameter list * of the calling routine. * * ===================================================================== * * .. Executable Statements .. * WRITE( *, FMT = 9999 )SRNAME, INFO * STOP * 9999 FORMAT( ' ** On entry to ', A6, ' parameter number ', I2, ' had ', $ 'an illegal value' ) * * End of XERBLA * END