
GALAHAD SCALE

USER DOCUMENTATION GALAHAD Optimization Library version 3.0

1 SUMMARY

This package calculates and applies shift and scale factors for the variables and constraints to try to equiilibrate the

quadratic programming problem

minimize 1
2 xT Hx+ gTx+ f (1.1)

subject to the general linear constraints

cl
i ≤ aT

i x ≤ cu
i , i = 1, . . . ,m, (1.2)

and the simple bound constraints

xl
j ≤ x j ≤ xu

j , j = 1, . . . ,n, (1.3)

where the n by n symmetric matrix H, the vectors g, ai, cl , cu, xl , xu and the scalar f are given. Full advantage is taken

of any zero coefficients in the matrix H, as well as the matrix A, whose rows are the vectors aT
i , i = 1, . . . ,m. Any of

the constraint bounds cl
i , cu

i , xl
j and xu

j may be infinite.

The derived type is also capable of supporting parametric quadratic programming problems, in which an addi-

tional objective term θδgT x+ θδ f is included, and the trajectory of solution are required for all 0 ≤ θ ≤ θmax for

which

cl
i +θδcl

i ≤ aT
i x ≤ cu

i +θδcu
i , i = 1, . . . ,m,

and

xl
j +θxl

j ≤ x j ≤ xu
j + δxu

j , j = 1, . . . ,n.

New variables X−1
s (x− xs) are calculated, involving the matrix of diagonal variable scaling factors Xs and a

corrsponding vector of shifts xs. Likelwise the constraint values are transformed to be C−1
s (Ax− cs), involving the

matrix of diagonal constraint scaling factors Cs and vector of corrsponding shifts cs. The value of the objective

function is transformed to be F−1
s (q(x)− fs) using an objective scaling factor Fs and shift fs.

ATTRIBUTES — Versions: GALAHAD SCALE single, GALAHAD SCALE double. Uses: GALAHAD SYMBOLS, GALAHAD-

SPACE, GALAHAD SPECFILE, GALAHAD TOOLS, GALAHAD SMT, GALAHAD QPT, GALAHAD TRANS. Date: January 2011.

Origin: N. I. M. Gould, Rutherford Appleton Laboratory. Language: Fortran 95 + TR 15581 or Fortran 2003.

2 HOW TO USE THE PACKAGE

Access to the package requires a USE statement such as

Single precision version

USE GALAHAD SCALE single

Double precision version

USE GALAHAD SCALE double

If it is required to use both modules at the same time, the derived types SMT type, QPT problem type, SCALE trans type,

SCALE control type, SCALE inform type and SCALE data type (Section 2.2) and the subroutines SCALE initialize,

SCALE get, SCALE apply, SCALE recover, SCALE terminate, (Section 2.3) and SCALE read specfile (Section 2.5)

must be renamed on one of the USE statements.

All use is subject to licence. See http://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD SCALE (February 20, 2017) 1

SCALE GALAHAD

2.1 Matrix storage formats

Both the Hessian matrix H and the constraint Jacobian A may be stored in a variety of input formats.

2.1.1 Dense storage format

The matrix A is stored as a compact dense matrix by rows, that is, the values of the entries of each row in turn are

stored in order within an appropriate real one-dimensional array. Component n∗ (i−1)+ j of the storage array A%val

will hold the value ai j for i = 1, . . . ,m, j = 1, . . . ,n. Since H is symmetric, only the lower triangular part (that is the

part hi j for 1 ≤ j ≤ i ≤ n) need be held. In this case the lower triangle will be stored by rows, that is component

i∗ (i− 1)/2+ j of the storage array H%val will hold the value hi j (and, by symmetry, h ji) for 1 ≤ j ≤ i ≤ n.

2.1.2 Sparse co-ordinate storage format

Only the nonzero entries of the matrices are stored. For the l-th entry of A, its row index i, column index j and

value ai j are stored in the l-th components of the integer arrays A%row, A%col and real array A%val, respectively. The

order is unimportant, but the total number of entries A%ne is also required. The same scheme is applicable to H (thus

requiring integer arrays H%row, H%col, a real array H%val and an integer value H%ne), except that only the entries in

the lower triangle need be stored.

2.1.3 Sparse row-wise storage format

Again only the nonzero entries are stored, but this time they are ordered so that those in row i appear directly before

those in row i+ 1. For the i-th row of A, the i-th component of a integer array A%ptr holds the position of the first

entry in this row, while A%ptr (m+1) holds the total number of entries plus one. The column indices j and values ai j

of the entries in the i-th row are stored in components l = A%ptr(i), . . . ,A%ptr (i+ 1)− 1 of the integer array A%col,

and real array A%val, respectively. The same scheme is applicable to H (thus requiring integer arrays H%ptr, H%col,

and a real array H%val), except that only the entries in the lower triangle need be stored.

For sparse matrices, this scheme almost always requires less storage than its predecessor.

2.1.4 Diagonal storage format

If H is diagonal (i.e., hi j = 0 for all 1 ≤ i 6= j ≤ n) only the diagonals entries hii, 1 ≤ i ≤ n, need be stored, and the first

n components of the array H%val may be used for the purpose. There is no sensible equivalent for the non-square A.

2.2 The derived data types

Six derived data types are accessible from the package.

2.2.1 The derived data type for holding matrices

The derived data type SMT TYPE is used to hold the matrices A and H. The components of SMT TYPE used here are:

m is a scalar component of type default INTEGER, that holds the number of rows in the matrix.

n is a scalar component of type default INTEGER, that holds the number of columns in the matrix.

ne is a scalar variable of type default INTEGER, that holds the number of matrix entries.

type is a rank-one allocatable array of type default CHARACTER, that is used to indicate the matrix storage scheme

used. Its precise length and content depends on the type of matrix to be stored (see §2.2.2).

All use is subject to licence. See http://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

2 SCALE (February 20, 2017) GALAHAD

GALAHAD SCALE

val is a rank-one allocatable array of type default REAL (double precision in GALAHAD SCALE double) and dimen-

sion at least ne, that holds the values of the entries. Each pair of off-diagonal entries hi j = h ji of a symmetric

matrix H is represented as a single entry (see §2.1.1–2.1.3). Any duplicated entries that appear in the sparse

co-ordinate or row-wise schemes will be summed.

row is a rank-one allocatable array of type default INTEGER, and dimension at least ne, that may hold the row indices

of the entries. (see §2.1.2).

col is a rank-one allocatable array of type default INTEGER, and dimension at least ne, that may the column indices

of the entries (see §2.1.2–2.1.3).

ptr is a rank-one allocatable array of type default INTEGER, and dimension at least m + 1, that may hold the pointers

to the first entry in each row (see §2.1.3).

2.2.2 The derived data type for holding the problem

The derived data type QPT problem type is used to hold the problem. The components of QPT problem type are:

n is a scalar variable of type default INTEGER, that holds the number of optimization variables, n.

m is a scalar variable of type default INTEGER, that holds the number of general linear constraints, m.

H is scalar variable of type SMT TYPE that holds the Hessian matrix H. The following components are used:

H%type is an allocatable array of rank one and type default CHARACTER, that is used to indicate the storage

scheme used. If the dense storage scheme (see Section 2.1.1) is used, the first five components of H%type

must contain the string DENSE. For the sparse co-ordinate scheme (see Section 2.1.2), the first ten com-

ponents of H%type must contain the string COORDINATE, for the sparse row-wise storage scheme (see

Section 2.1.3), the first fourteen components of H%type must contain the string SPARSE BY ROWS, and for

the diagonal storage scheme (see Section 2.1.4), the first eight components of H%type must contain the

string DIAGONAL.

For convenience, the procedure SMT put may be used to allocate sufficient space and insert the required

keyword into H%type. For example, if prob is of derived type SCALE problem type and involves a Hes-

sian we wish to store using the co-ordinate scheme, we may simply

CALL SMT_put(prob%H%type, ’COORDINATE’)

See the documentation for the GALAHAD package SMT for further details on the use of SMT put.

H%ne is a scalar variable of type default INTEGER, that holds the number of entries in the lower triangular part

of H in the sparse co-ordinate storage scheme (see Section 2.1.2). It need not be set for any of the other

three schemes.

H%val is a rank-one allocatable array of type default REAL (double precision in GALAHAD SCALE double), that

holds the values of the entries of the lower triangular part of the Hessian matrix H in any of the storage

schemes discussed in Section 2.1.

H%row is a rank-one allocatable array of type default INTEGER, that holds the row indices of the lower triangu-

lar part of H in the sparse co-ordinate storage scheme (see Section 2.1.2). It need not be allocated for any

of the other three schemes.

H%col is a rank-one allocatable array variable of type default INTEGER, that holds the column indices of the

lower triangular part of H in either the sparse co-ordinate (see Section 2.1.2), or the sparse row-wise (see

Section 2.1.3) storage scheme. It need not be allocated when the dense or diagonal storage schemes are

used.

All use is subject to licence. See http://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD SCALE (February 20, 2017) 3

SCALE GALAHAD

H%ptr is a rank-one allocatable array of dimension n+1 and type default INTEGER, that holds the starting posi-

tion of each row of the lower triangular part of H, as well as the total number of entries plus one, in the

sparse row-wise storage scheme (see Section 2.1.3). It need not be allocated when the other schemes are

used.

G is a rank-one allocatable array of dimension n and type default REAL (double precision in GALAHAD SCALE -

double), that holds the gradient g of the linear term of the quadratic objective function. The j-th component of

G, j = 1, . . . ,n, contains g j.

DG is a rank-one allocatable array of dimension n and type default REAL (double precision in GALAHAD SCALE -

double), that may hold the gradient δg of the parametric linear term of the quadratic objective function. The

j-th component of DG, j = 1, . . . ,n, contains δg j.

f is a scalar variable of type default REAL (double precision in GALAHAD SCALE double), that holds the constant

term, f , in the objective function.

df is a scalar variable of type default REAL (double precision in GALAHAD SCALE double), that holds the parametric

constant term, δ f , in the objective function.

A is scalar variable of type SMT TYPE that holds the Jacobian matrix A. The following components are used:

A%type is an allocatable array of rank one and type default CHARACTER, that is used to indicate the storage

scheme used. If the dense storage scheme (see Section 2.1.1) is used, the first five components of A%type

must contain the string DENSE. For the sparse co-ordinate scheme (see Section 2.1.2), the first ten compo-

nents of A%type must contain the string COORDINATE, while for the sparse row-wise storage scheme (see

Section 2.1.3), the first fourteen components of A%type must contain the string SPARSE BY ROWS.

Just as for H%type above, the procedure SMT put may be used to allocate sufficient space and insert the

required keyword into A%type. Once again, if prob is of derived type SCALE problem type and involves

a Jacobian we wish to store using the sparse row-wise storage scheme, we may simply

CALL SMT_put(prob%A%type, ’SPARSE_BY_ROWS’)

A%ne is a scalar variable of type default INTEGER, that holds the number of entries in A in the sparse co-ordinate

storage scheme (see Section 2.1.2). It need not be set for either of the other two schemes.

A%val is a rank-one allocatable array of type default REAL (double precision in GALAHAD SCALE double), that

holds the values of the entries of the Jacobian matrix A in any of the storage schemes discussed in Sec-

tion 2.1.

A%row is a rank-one allocatable array of type default INTEGER, that holds the row indices of A in the sparse co-

ordinate storage scheme (see Section 2.1.2). It need not be allocated for either of the other two schemes.

A%col is a rank-one allocatable array variable of type default INTEGER, that holds the column indices of A in

either the sparse co-ordinate (see Section 2.1.2), or the sparse row-wise (see Section 2.1.3) storage scheme.

It need not be allocated when the dense storage scheme is used.

A%ptr is a rank-one allocatable array of dimension m+1 and type default INTEGER, that holds the starting po-

sition of each row of A, as well as the total number of entries plus one, in the sparse row-wise storage

scheme (see Section 2.1.3). It need not be allocated when the other schemes are used.

C l is a rank-one allocatable array of dimension m and type default REAL (double precision in GALAHAD SCALE-

double), that holds the vector of lower bounds cl on the general constraints. The i-th component of C l,

i= 1, . . . ,m, contains cl
i . Infinite bounds are allowed by setting the corresponding components of C l to any value

smaller than -infinity, where infinity is a component of the control array control (see Section 2.2.4).

All use is subject to licence. See http://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

4 SCALE (February 20, 2017) GALAHAD

GALAHAD SCALE

C u is a rank-one allocatable array of dimension m and type default REAL (double precision in GALAHAD SCALE-

double), that holds the vector of upper bounds cu on the general constraints. The i-th component of C u,

i = 1, . . . ,m, contains cu
i . Infinite bounds are allowed by setting the corresponding components of C u to any

value larger than infinity, where infinity is a component of the control array control (see Section 2.2.4).

DC l is a rank-one allocatable array of dimension m and type default REAL (double precision in GALAHAD SCALE -

double), that may hold the vector of parametric lower bounds δcl on the general constraints. The i-th component

of DC l, i = 1, . . . ,m, contains δcl
i . Only components corresponding to finite lower bounds cl

i need be set.

DC u is a rank-one allocatable array of dimension m and type default REAL (double precision in GALAHAD SCALE -

double), that may hold the vector of parametric upper bounds δcu on the general constraints. The i-th com-

ponent of DC u, i = 1, . . . ,m, contains δcu
i . Only components corresponding to finite upper bounds cu

i need be

set.

X l is a rank-one allocatable array of dimension n and type default REAL (double precision in GALAHAD SCALE -

double), that holds the vector of lower bounds xl on the the variables. The j-th component of X l, j = 1, . . . ,n,

contains xl
j. Infinite bounds are allowed by setting the corresponding components of X l to any value smaller

than -infinity, where infinity is a component of the control array control (see Section 2.2.4).

X u is a rank-one allocatable array of dimension n and type default REAL (double precision in GALAHAD SCALE -

double), that holds the vector of upper bounds xu on the variables. The j-th component of X u, j = 1, . . . ,n,

contains xu
j . Infinite bounds are allowed by setting the corresponding components of X u to any value larger

than that infinity, where infinity is a component of the control array control (see Section 2.2.4).

DX l is a rank-one allocatable array of dimension n and type default REAL (double precision in GALAHAD SCALE -

double), that may hold the vector of parametric lower bounds δxl on the variables. The j-th component of

DX l, j = 1, . . . ,n, contains δxl
j. Only components corresponding to finite lower bounds xl

j need be set.

DX u is a rank-one allocatable array of dimension n and type default REAL (double precision in GALAHAD SCALE -

double), that may hold the vector of parametric upper bounds δxu on the variables. The j-th component of

DX u, j = 1, . . . ,n, contains δxu
j . Only components corresponding to finite upper bounds xu

j need be set.

X is a rank-one allocatable array of dimension n and type default REAL (double precision in GALAHAD SCALE -

double), that holds the values x of the optimization variables. The j-th component of X, j = 1, . . . ,n, contains

x j.

C is a rank-one allocatable array of dimension m and type default REAL (double precision in GALAHAD SCALE -

double), that holds the values Ax of the constraints. The i-th component of C, i= 1, . . . ,m, contains aT
i x≡ (Ax)i.

Y is a rank-one allocatable array of dimension m and type default REAL (double precision in GALAHAD SCALE -

double), that holds the values y of estimates of the Lagrange multipliers corresponding to the general linear

constraints (see Section 4). The i-th component of Y, i = 1, . . . ,m, contains yi.

Z is a rank-one allocatable array of dimension n and type default REAL (double precision in GALAHAD SCALE -

double), that holds the values z of estimates of the dual variables corresponding to the simple bound constraints

(see Section 4). The j-th component of Z, j = 1, . . . ,n, contains z j.

2.2.3 The derived data type for holding the scaling factors and shifts

The derived data type SCALE trans type is used to hold the computed scaling factors and shifts. The components of

SCALE trans type are:

X scale is a rank-one allocatable array of dimension n and type default REAL (double precision in GALAHAD SCALE -

double), that holds the variable scale factors. The j-th component of X scale, j = 1, . . . ,n, contains the scale

factor to be applied to x j.

All use is subject to licence. See http://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD SCALE (February 20, 2017) 5

SCALE GALAHAD

X shift is a rank-one allocatable array of dimension n and type default REAL (double precision in GALAHAD SCALE -

double), that holds the variable shifts if appropriate. The j-th component of X shift, j = 1, . . . ,n, contains the

shift to be applied to x j.

C scale is a rank-one allocatable array of dimension m and type default REAL (double precision in GALAHAD SCALE -

double), that holds the constraint scale factors. The i-th component of C scale, i = 1, . . . ,m, contains the scale

factor to be applied to the i-th constraint.

C shift is a rank-one allocatable array of dimension m and type default REAL (double precision in GALAHAD SCALE-

double), that holds the constraint shifts if appropriate. The i-th component of C shift, i = 1, . . . ,m, contains

the shift to be applied to the i-th constraint.

f scale is a scalar variable of type default REAL (double precision in GALAHAD SCALE double), that holds the scale

factor for the objective function.

f shift is a scalar variable of type default REAL (double precision in GALAHAD SCALE double), that holds the shift

for the objective function.

2.2.4 The derived data type for holding control parameters

The derived data type SCALE control type is used to hold controlling data. Default values may be obtained by calling

SCALE initialize (see Section 2.3.1), while components may also be changed by calling SCALE read specfile

(see Section 2.5.1). The components of SCALE control type are:

error is a scalar variable of type default INTEGER, that holds the stream number for error messages. Printing of error

messages in SCALE get, SCALE apply, SCALE recover and SCALE terminate is suppressed if error≤ 0. The

default is error = 6.

out is a scalar variable of type default INTEGER, that holds the stream number for informational messages. Printing

of informational messages in SCALE get, SCALE apply, SCALE recover and SCALE terminate is suppressed

if out < 0. The default is out = 6.

print level is a scalar variable of type default INTEGER, that is used to control the amount of informational output

which is required. No informational output will occur if print level ≤ 0. If print level = 1, a single line

of output will be produced for each iteration of the process. If print level ≥ 2, this output will be increased

to provide significant detail of each iteration. The default is print level = 0.

maxit is a scalar variable of type default INTEGER, that holds the maximum number of scaling iterations which will

be allowed in SCALE get. The default is maxit = 100.

shift x is a scalar variable of type default INTEGER, that should be set be larger than 0 if shifts should be applied to

the variables x. No shifts will be applied if shift x ≤ 0. The default is shift x = 0.

scale x is a scalar variable of type default INTEGER, that should be set be larger than 0 if scaling should be applied

to the variables x. No scaling will be applied if scale x ≤ 0. The default is scale x = 0.

shift c is a scalar variable of type default INTEGER, that should be set be larger than 0 if shifts should be applied to

the general constraints. No shifts will be applied if shift c ≤ 0. The default is shift c = 0.

scale c is a scalar variable of type default INTEGER, that should be set be larger than 0 if scaling should be applied

to the general constraints No scaling will be applied if scale c ≤ 0. The default is scale c = 0.

shift f is a scalar variable of type default INTEGER, that should be set be larger than 0 if shifts should be applied to

the objective function. No shifts will be applied if shift f ≤ 0. The default is shift f = 0.

All use is subject to licence. See http://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

6 SCALE (February 20, 2017) GALAHAD

GALAHAD SCALE

scale f is a scalar variable of type default INTEGER, that should be set be larger than 0 if scaling should be applied

to the onjective function. No scaling will be applied if scale f ≤ 0. The default is scale f = 0.

infinity is a scalar variable of type default REAL (double precision in GALAHAD SCALE double), that is used to

specify which constraint bounds are infinite. Any bound larger than infinity in modulus will be regarded as

infinite. The default is infinity = 1019.

stop tol is a scalar variable of type default REAL (double precision in GALAHAD SCALE double), that is specifes the

stopping tolerance using for the scaling iteration if required.

scale x min is a scalar variable of type default REAL (double precision in GALAHAD SCALE double), that is used

to specify the minimum permitted variable scale factor. The default is scale x min = 1, and any specified

non-positive value of scale x min will be interpreted as the default.

scale c min is a scalar variable of type default REAL (double precision in GALAHAD SCALE double), that is used

to specify the minimum permitted constraint scale factor. The default is scale c min = 1, and any specified

non-positive value of scale c min will be interpreted as the default.

space critical is a scalar variable of type default LOGICAL, that must be set .TRUE. if space is critical when

allocating arrays and .FALSE. otherwise. The package may run faster if space critical is .FALSE. but at the

possible expense of a larger storage requirement. The default is space critical = .FALSE..

deallocate error fatal is a scalar variable of type default LOGICAL, that must be set .TRUE. if the user wishes to

terminate execution if a deallocation fails, and .FALSE. if an attempt to continue will be made. The default is

deallocate error fatal = .FALSE..

prefix is a scalar variable of type default CHARACTER and length 30, that may be used to provide a user-selected

character string to preface every line of printed output. Specifically, each line of output will be prefaced by the

string prefix(2:LEN(TRIM(prefix))-1), thus ignoring the first and last non-null components of the supplied

string. If the user does not want to preface lines by such a string, they may use the default prefix = "".

2.2.5 The derived data type for holding informational parameters

The derived data type SCALE inform type is used to hold parameters that give information about the progress and

needs of the algorithm. The components of SCALE inform type are:

status is a scalar variable of type default INTEGER, that gives the exit status of the algorithm. See Section 2.4 for

details.

alloc status is a scalar variable of type default INTEGER, that gives the status of the last attempted array allocation

or deallocation. This will be 0 if status = 0.

bad alloc is a scalar variable of type default CHARACTER and length 80, that gives the name of the last internal array

for which there were allocation or deallocation errors. This will be the null string if status = 0.

deviationis a scalar variable of type default REAL (double precision in GALAHAD SCALE double), that holds the value of

the deviation from double-stocasticity when appropriate.

2.2.6 The derived data type for holding problem data

The derived data type SCALE data type is used to hold all the data for a particular problem, or sequences of problems

with the same structure, between calls of SCALE procedures. This data should be preserved, untouched, from the initial

call to SCALE initialize to the final call to SCALE terminate.

All use is subject to licence. See http://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD SCALE (February 20, 2017) 7

SCALE GALAHAD

2.3 Argument lists and calling sequences

There are five procedures for user calls (see Section 2.5 for further features):

1. The subroutine SCALE initialize is used to set default values, and initialize private data, before solving one

or more problems with the same sparsity and bound structure.

2. The subroutine SCALE get is called to compute the scaling factors.

3. The subroutine SCALE apply is called to apply the scaling factors to the data of a QP problem.

4. The subroutine SCALE recover is called to undo the effects of the scaling factors previously applied to a QP

problem.

5. The subroutine SCALE terminate is provided to allow the user to automatically deallocate array components

of the private data, allocated by SCALE get, at the end of the solution process.

2.3.1 The initialization subroutine

Default values are provided as follows:

CALL SCALE initialize(data, control, inform)

data is a scalar INTENT(INOUT) argument of type SCALE data type (see Section 2.2.6). It is used to hold data about

the problem being scaled.

control is a scalar INTENT(OUT) argument of type SCALE control type (see Section 2.2.4). On exit, control

contains default values for the components as described in Section 2.2.4. These values should only be changed

after calling SCALE initialize.

inform is a scalar INTENT(OUT) argument of type SCALE inform type (see Section 2.2.5). A successful call to

SCALE initialize is indicated when the component status has the value 0. For other return values of status,

see Section 2.4.

2.3.2 The subroutine that computes the scaling factors

The scaling factors and shifts are calculated as follows:

CALL SCALE get(prob, scale, trans, data, control, inform)

prob is a scalar INTENT(IN) argument of type QPT problem type (see Section 2.2.2). It is used to hold data about

the problem being scaled. The user must allocate all the array components for the non-parametric problem

(1.1)–(1.3), and set values for these components.

The components prob%X, prob%C, prob%Y and prob%Z should be set to “typical” estimates of the primal

variables, x, general constraint values Ax, Lagrange multipliers for the general constraints, y and dual variables

for the bound constraints, z, respectively. Restrictions: prob%n > 0, prob%m ≥ 0, prob%A type ∈ {’DENSE’,

’COORDINATE’, ’SPARSE BY ROWS’ }, and prob%H type ∈ {’DENSE’, ’COORDINATE’, ’SPARSE BY ROWS’,

’DIAGONAL’ }.

scale is a scalar INTENT(IN) argument of type default INTEGER, that is used to control problem scaling. Possible

values and their consequences are:

≤ 0 or > 7. No scaling will be performed

1. Scaling and shifts will be calculated to try to map all variables and constraints to have values between 0 and

1.

All use is subject to licence. See http://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

8 SCALE (February 20, 2017) GALAHAD

GALAHAD SCALE

2. The symmetric Curtis-Reid method will be applied to compute scalings to normalize the rows of the matrix

K =

(

H AT

A 0

)

.

3. The unsymmetric Curtis-Reid method will be applied to normalize the rows and columns of A.

4. Scaling will be applied to equilibrate the norms of the rows of A.

5. Strategy 2 will be followed by strategy 4.

6. Strategy 3 will be followed by strategy 4.

7. Scaling will be applied to equilibrate the rows and columns of K using the Sinkhorn-Knopp strategy.

trans is a scalar INTENT(INOUT) argument of type SCALE data type (see Section 2.2.3) whose components will be

filled as appropriate on output with the scaling factors and shifts for the requested scaling strategy.

data is a scalar INTENT(INOUT) argument of type SCALE data type (see Section 2.2.6). It is used to hold data about

the problem being solved. It must not have been altered by the user since the last call to SCALE initialize.

control is a scalar INTENT(IN) argument of type SCALE control type (see Section 2.2.4). Default values may be

assigned by calling SCALE initialize prior to the first call to SCALE get.

inform is a scalar INTENT(INOUT) argument of type SCALE inform type (see Section 2.2.5). A successful call to

SCALE get is indicated when the component status has the value 0. For other return values of status, see

Section 2.4.

2.3.3 The subroutine that applies the scaling factors and shifts

The scaling factors and shifts are applied to the quadratic programming problem data as follows:

CALL SCALE apply(prob, trans, data, control, inform)

The arguments prob, trans, data, control and inform are as described for SCALE get except that prob is now

INTENT(INOUT) while trans is INTENT(IN). On exit, the scalings and shifts recorded in trans will be applied to the

quadratic programming data input in prob; the transformed problem data will be output in prob. The transformation

will only be applied to the parametric components δg, δ f , δcl , δcu, δxl and δxu of the problem when prob%DG is

allocated.

A successful call to SCALE apply is indicated when the component inform%status has the value 0. For other

return values of inform%status, see Section 2.4.

2.3.4 The subroutine that “undoes” the scaling factors and shifts

The effects of the scaling factors and shifts on the quadratic programming problem data are “undone” as follows:

CALL SCALE recover(prob, trans, data, control, inform)

The arguments prob, trans, data, control and inform are exactly as described for SCALE apply except that now

on exit, the inverses of the scalings and shifts recorded in trans will be applied to the quadratic programming data

input in prob; the unscaled problem data will be output in prob. The reverse transformation will only be applied to

the parametric components δg, δ f , δcl , δcu, δxl and δxu of the problem when prob%DG is allocated.

A successful call to SCALE recover is indicated when the component inform%status has the value 0. For other

return values of inform%status, see Section 2.4.

All use is subject to licence. See http://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD SCALE (February 20, 2017) 9

SCALE GALAHAD

2.3.5 The termination subroutine

All previously allocated arrays are deallocated as follows:

CALL SCALE terminate(data, control, inform)

data is a scalar INTENT(INOUT) argument of type SCALE data type exactly as for SCALE get, which must not have

been altered by the user since the last call to SCALE initialize. On exit, array components will have been

deallocated.

control is a scalar INTENT(IN) argument of type SCALE control type exactly as for SCALE get.

inform is a scalar INTENT(OUT) argument of type SCALE inform type exactly as for SCALE get. Only the compo-

nent status will be set on exit, and a successful call to SCALE terminate is indicated when this component

status has the value 0. For other return values of status, see Section 2.4.

2.4 Warning and error messages

A negative value of inform%status on exit from SCALE get, SCALE apply, SCALE recover or SCALE terminate

indicates that an error has occurred. No further calls should be made until the error has been corrected. Possible values

are:

-1. An allocation error occurred. A message indicating the offending array is written on unit control%error, and the

returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc respectively.

-2. A deallocation error occurred. A message indicating the offending array is written on unit control%error and

the returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc respectively.

-3. One of the restrictions prob%n > 0, prob%m ≥ 0, or the requirements that prob%A type contains its relevant

string ’DENSE’, ’COORDINATE’ or ’SPARSE BY ROWS’ and prob%H type contain its relevant string ’DENSE’,

’COORDINATE’, ’SPARSE BY ROWS’ or ’DIAGONAL’ has been violated.

A positive value of inform%status is a warning. Possible values are:

18. Too many scaling iterations have been performed. This may happen if control%maxit is too small.

2.5 Further features

In this section, we describe an alternative means of setting control parameters, that is components of the variable

control of type SCALE control type (see Section 2.2.4), by reading an appropriate data specification file using

the subroutine SCALE read specfile. This facility is useful as it allows a user to change SCALE control parameters

without editing and recompiling programs that call SCALE.

A specification file, or specfile, is a data file containing a number of ”specification commands”. Each command

occurs on a separate line, and comprises a ”keyword”, which is a string (in a close-to-natural language) used to identify

a control parameter, and an (optional) ”value”, which defines the value to be assigned to the given control parameter.

All keywords and values are case insensitive, keywords may be preceded by one or more blanks but values must not

contain blanks, and each value must be separated from its keyword by at least one blank. Values must not contain more

than 30 characters, and each line of the specfile is limited to 80 characters, including the blanks separating keyword

and value.

The portion of the specification file used by SCALE read specfile must start with a ”BEGIN SCALE” command

and end with an ”END” command. The syntax of the specfile is thus defined as follows:

All use is subject to licence. See http://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

10 SCALE (February 20, 2017) GALAHAD

GALAHAD SCALE

(.. lines ignored by QP_read_specfile ..)

BEGIN CQP

keyword value

.......

keyword value

END

(.. lines ignored by QP_read_specfile ..)

where keyword and value are two strings separated by (at least) one blank. The “BEGIN SCALE” and “END” delimiter

command lines may contain additional (trailing) strings so long as such strings are separated by one or more blanks,

so that lines such as

BEGIN QP SPECIFICATION

and

END QP SPECIFICATION

are acceptable. Furthermore, between the “BEGIN SCALE” and “END” delimiters, specification commands may occur

in any order. Blank lines and lines whose first non-blank character is ! or * are ignored. The content of a line after a !

or * character is also ignored (as is the ! or * character itself). This provides an easy manner to ”comment out” some

specification commands, or to comment specific values of certain control parameters.

The value of a control parameters may be of three different types, namely integer, logical or real. Integer and real

values may be expressed in any relevant Fortran integer and floating-point formats (respectively). Permitted values for

logical parameters are ”ON”, ”TRUE”, ”.TRUE.”, ”T”, ”YES”, ”Y”, or ”OFF”, ”NO”, ”N”, ”FALSE”, ”.FALSE.” and ”F”.

Empty values are also allowed for logical control parameters, and are interpreted as ”TRUE”.

The specification file must be open for input when SCALE read specfile is called, and the associated device

number passed to the routine in device (see below). Note that the corresponding file is REWINDed, which makes it

possible to combine the specifications for more than one program/routine. For the same reason, the file is not closed

by SCALE read specfile.

2.5.1 To read control parameters from a specification file

Control parameters may be read from a file as follows:

CALL SCALE_read_specfile(control, device)

control is a scalar INTENT(INOUT)argument of type SCALE control type (see Section 2.2.4). Default values

should have already been set, perhaps by calling SCALE initialize. On exit, individual components of

control may have been changed according to the commands found in the specfile. Specfile commands and

the component (see Section 2.2.4) of control that each affects are given in Table 2.1.

device is a scalar INTENT(IN)argument of type default INTEGER, that must be set to the unit number on which the

specfile has been opened. If device is not open, control will not be altered and execution will continue, but

an error message will be printed on unit control%error.

2.6 Information printed

If control%print level is positive, information about the progress of the algorithm will be printed on unit control-

%out. If control%print level > 0, a few lines of output indicating the progress of the computation of the scaling

factotrs and shifts may be given.

All use is subject to licence. See http://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD SCALE (February 20, 2017) 11

SCALE GALAHAD

command component of control value type

error-printout-device %error integer

printout-device %out integer

print-level %print level integer

maximum-number-of-iterations %maxit integer

shift-x %shift x integer

scale-x %scale x integer

shift-c %shift c integer

scale-c %scale c integer

shift-f %shift f integer

scale-f %scale f integer

infinity-value %infinity real

stop-tolerance %stop tol real

smallest-x-scaling %scale x min real

smallest-c-scaling %scale x min real

space-critical %space critical logical

deallocate-error-fatal %deallocate error fatal logical

output-line-prefix %prefix character

Table 2.1: Specfile commands and associated components of control.

3 GENERAL INFORMATION

Use of common: None.

Workspace: Provided automatically by the module.

Other routines called directly: None.

Other modules used directly: SCALE get , SCALE apply and SCALE recover call the GALAHAD packages GALAHAD SY-

MBOLS, GALAHAD SPACE, GALAHAD SPECFILE, GALAHAD TOOLS, GALAHAD SMT, GALAHAD QPT and GALAHAD TRANS.

Input/output: Output is under control of the arguments control%error, control%out and control%print level.

Restrictions: prob%n> 0, prob%m≥ 0, prob%A type and prob%H type ∈{’DENSE’, ’COORDINATE’, ’SPARSE BY -

ROWS’, ’DIAGONAL’ }.

Portability: ISO Fortran 95 + TR 15581 or Fortran 2003. The package is thread-safe.

4 METHOD

The required solution x necessarily satisfies the primal optimality conditions

Ax = c (4.1)

and

cl ≤ c ≤ cu, xl ≤ x ≤ xu, (4.2)

the dual optimality conditions

Hx+ g= AT y+ z, y = yl + yu and z = zl + zu, (4.3)

All use is subject to licence. See http://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

12 SCALE (February 20, 2017) GALAHAD

GALAHAD SCALE

and

yl ≥ 0, yu ≤ 0, zl ≥ 0 and zu ≤ 0, (4.4)

and the complementary slackness conditions

(Ax− cl)T yl = 0, (Ax− cu)T yu = 0, (x− xl)T zl = 0 and (x− xu)T zu = 0, (4.5)

where the vectors y and z are known as the Lagrange multipliers for the general linear constraints, and the dual

variables for the bounds, respectively, and where the vector inequalities hold componentwise.

The Curtis-Reid symmetric and unsymmetric matrix scaling procedures are described in

A. R. Curtis and J. K. Reid (1972). On the automatic scaling of matrices for Gaussian elimination. IMA J. Appl.

Math. 10(1) 118-124.

The Sinkhorn-Knopp scaling strategy that aims to scale a symmetric matrix so that it is doubly stochastic (i.e., its

rows and columns have unit norm) was proposed by

R. Sinkhorn and P. Knopp (1967). Concerning nonnegative matrices and doubly stochastic matrices. Pacific J. Math.

21(2) 343-348.

The other strategies are “home grown”.

5 EXAMPLE OF USE

Suppose we are considering the quadratic program 1
2 x2

1 + x2
2 + x2x3 + 3

2 x2
3 + 2x2 + 1 subject to the the general linear

constraints 1 ≤ 2x1 + x2 ≤ 2 and x2 + x3 = 2, and simple bounds −1 ≤ x1 ≤ 1 and x3 ≤ 2. Then, on writing the data

for this problem as

H =

1

2 1

1 3

 , g =

0

2

0

 , xl =

−1

−∞

−∞

 , xu =

1

∞

2

and

A =

(

2 1

1 1

)

, cl =

(

1

2

)

, and cu =

(

2

2

)

in sparse co-ordinate format, we may transform the problem using Sinkhorn-Knopp scaling using the following code:

! THIS VERSION: GALAHAD 2.4 - 17/01/2011 AT 15:30 GMT.

PROGRAM GALAHAD_SCALE_EXAMPLE

USE GALAHAD_SCALE_double ! double precision version

USE GALAHAD_SMT_double

IMPLICIT NONE

INTEGER, PARAMETER :: wp = KIND(1.0D+0) ! set precision

REAL (KIND = wp), PARAMETER :: infinity = 10.0_wp ** 20

TYPE (QPT_problem_type) :: p

TYPE (SCALE_trans_type) :: trans

TYPE (SCALE_data_type) :: data

TYPE (SCALE_control_type) :: control

TYPE (SCALE_inform_type) :: inform

INTEGER :: s, scale

INTEGER, PARAMETER :: n = 3, m = 2, h_ne = 4, a_ne = 4

! start problem data

ALLOCATE(p%G(n), p%X_l(n), p%X_u(n))

ALLOCATE(p%C(m), p%C_l(m), p%C_u(m))

ALLOCATE(p%X(n), p%Y(m), p%Z(n))

p%n = n ; p%m = m ; p%f = 1.0_wp ! dimensions & obj constant

All use is subject to licence. See http://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD SCALE (February 20, 2017) 13

SCALE GALAHAD

p%G = (/ 0.0_wp, 2.0_wp, 0.0_wp /) ! objective gradient

p%C_l = (/ 1.0_wp, 2.0_wp /) ! constraint lower bound

p%C_u = (/ 2.0_wp, 2.0_wp /) ! constraint upper bound

p%X_l = (/ - 1.0_wp, - infinity, - infinity /) ! variable lower bound

p%X_u = (/ 1.0_wp, infinity, 2.0_wp /) ! variable upper bound

p%X = 0.0_wp ; p%Y = 0.0_wp ; p%Z = 0.0_wp ! typical values for x, y & z

p%C = 0.0_wp ! c = A * x

! sparse co-ordinate storage format

CALL SMT_put(p%H%type, ’COORDINATE’, s) ! specify co-ordinate

CALL SMT_put(p%A%type, ’COORDINATE’, s) ! storage for H and A

ALLOCATE(p%H%val(h_ne), p%H%row(h_ne), p%H%col(h_ne))

ALLOCATE(p%A%val(a_ne), p%A%row(a_ne), p%A%col(a_ne))

p%H%val = (/ 1.0_wp, 2.0_wp, 1.0_wp, 3.0_wp /) ! Hessian H

p%H%row = (/ 1, 2, 2, 3 /) ! NB lower triangle

p%H%col = (/ 1, 2, 1, 3 /) ; p%H%ne = h_ne

p%A%val = (/ 2.0_wp, 1.0_wp, 1.0_wp, 1.0_wp /) ! Jacobian A

p%A%row = (/ 1, 1, 2, 2 /)

p%A%col = (/ 1, 2, 2, 3 /) ; p%A%ne = a_ne

! problem data complete - compute and apply scale factors

CALL SCALE_initialize(data, control, inform) ! Initialize controls

control%infinity = infinity ! Set infinity

scale = 7 ! Sinkhorn-Knopp scaling

CALL SCALE_get(p, scale, trans, data, control, inform) ! Get scalings

IF (inform%status == 0) THEN ! Successful return

WRITE(6, "(’ variable scalings : ’, /, (5ES12.4))") trans%X_scale

WRITE(6, "(’ constraint scalings : ’, /, (5ES12.4))") trans%C_scale

ELSE ! Error returns

WRITE(6, "(’ SCALE_get exit status = ’, I6) ") inform%status

END IF

CALL SCALE_apply(p, trans, data, control, inform)

IF (inform%status == 0) THEN ! Successful return

WRITE(6, "(’ scaled A : ’, /, (5ES12.4))") p%A%val

ELSE ! Error returns

WRITE(6, "(’ SCALE_get exit status = ’, I6) ") inform%status

END IF

CALL SCALE_terminate(data, control, inform, trans) ! delete workspace

END PROGRAM GALAHAD_SCALE_EXAMPLE

This produces the following output:

variable scalings :

7.0711E-01 7.0711E-01 5.7735E-01

constraint scalings :

7.0711E-01 1.2968E+00

scaled A :

1.0000E+00 5.0000E-01 9.1700E-01 7.4873E-01

The same problem may be scaled holding the data in a sparse row-wise storage format by replacing the lines

! sparse co-ordinate storage format

...

! problem data complete

by

! sparse row-wise storage format

CALL SMT_put(p%H%type, ’SPARSE_BY_ROWS’) ! Specify sparse-by-row

All use is subject to licence. See http://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

14 SCALE (February 20, 2017) GALAHAD

GALAHAD SCALE

ALLOCATE(p%H%val(h_ne), p%H%col(h_ne), p%H%ptr(n + 1))

ALLOCATE(p%A%val(a_ne), p%A%col(a_ne), p%A%ptr(m + 1))

p%H%val = (/ 1.0_wp, 2.0_wp, 1.0_wp, 3.0_wp /) ! Hessian H

p%H%col = (/ 1, 2, 3, 3 /) ! NB lower triangular

p%H%ptr = (/ 1, 2, 3, 5 /) ! Set row pointers

! problem data complete

or using a dense storage format with the replacement lines

! dense storage format

CALL SMT_put(p%H%type, ’DENSE’) ! Specify dense

ALLOCATE(p%H%val(n * (n + 1) / 2))

p%H%val = (/ 1.0_wp, 0.0_wp, 2.0_wp, 0.0_wp, 1.0_wp, 3.0_wp /) ! Hessian

! problem data complete

respectively.

If instead H had been the diagonal matrix

H =

1

2

3

but the other data is as before, the diagonal storage scheme might be used for H, and in this case we would instead

CALL SMT_put(prob%H%type, ’DIAGONAL’) ! Specify dense storage for H

ALLOCATE(p%H%val(n))

p%H%val = (/ 1.0_wp, 2.0_wp, 3.0_wp /) ! Hessian values

All use is subject to licence. See http://galahad.rl.ac.uk/galahad-www/cou.html .
For any commercial application, a separate license must be signed.

GALAHAD SCALE (February 20, 2017) 15

