
GALAHAD RAND

USER DOCUMENTATION GALAHAD Optimization Library version 4.0

1 SUMMARY

GALAHAD RAND is a suite of Fortran procedures for generating uniformly distributed pseudo-random numbers.

Random reals are generated in the range 0 < ξ < 1 or the range −1 < η < 1 and random integers in the range

1 ≤ k ≤ N where N is specified by the user.

A multiplicative congruent method is used where a 31 bit generator word g is maintained. On each call to a

procedure of the package, gn+1 is updated to 75gnmod(231 − 1); the initial value of g is 216 − 1. Depending upon the

type of random number required the following are computed ξ= gn+1/(2
31−1); η = 2ξ−1 or k = integer partξN+1.

The package also provides the facility for saving the current value of the generator word and for restarting with

any specified value.

ATTRIBUTES — Versions: GALAHAD RAND single, GALAHAD RAND double, Uses: None. Date: March 2001.

Origin: N. I. M. Gould and J. K. Reid, Rutherford Appleton Laboratory. Language: Fortran 95 + TR 15581 or

Fortran 2003.

2 HOW TO USE THE PACKAGE

Access to the package requires a USE statement such as

Single precision version

USE GALAHAD RAND single

Double precision version

USE GALAHAD RAND double

If it is required to use both modules at the same time, the derived type RAND seed (Section 2.1) and the sub-

routinesRAND random real, RAND random integer, RAND get seed, and RAND set seed (Section 2.2) must be re-

named on one of the USE statements. Their seeds will be independent.

2.1 The derived data types

The user must provide a variable of derived type RAND seed to hold the current seed value which must be passed to

all calls of RAND. The seed value component is private and can only be set and retrieved through the RAND set seed

and RAND get seed entries.

2.2 Argument lists and calling sequences

There are five procedures for user calls. The initialization entry must be called before any call to the RAND random real,

RAND random integer and RAND get seed entries.

2.2.1 Subroutine to initialize the generator word

This entry must be called first to initialize the generator word.

CALL RAND initialize( seed )

seed is a scalar INTENT(OUT) argument of derived type RAND seed that holds the seed value.

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD RAND (March 18, 2022) 1



RAND GALAHAD

2.2.2 Subroutine to obtain random real values

A random real value or values may be obtained as follows:

CALL RAND random real( seed, positive, random real )

seed is a scalar INTENT(INOUT) argument of derived type RAND seed that holds the seed value.

positive is a scalar INTENT(IN) argument of type default LOGICAL. If positive is .TRUE., the generated random

number is a real value in the range 0 < ξ < 1, while if positive is .FALSE., the generated random number is

a real value in the range −1 < η < 1.

random real is a scalar or rank 1 or 2 array INTENT(OUT) argument of type REAL (double precision in GALAH-

AD RAND double). It is set to the required random number(s).

2.2.3 Subroutine to obtain random integer values

A random integer value or values may be obtained as follows:

CALL RAND random integer( seed, n, random integer )

seed is a scalar INTENT(INOUT) argument of derived type RAND seed that holds the seed value.

n is a scalar INTENT(IN) argument of type default INTEGER. It must be set by the user to specify the upper bound

for the range 1 ≤ k ≤n within which the generated random number(s) k is/are required to lie. Restriction: n

must be positive.

random integer is a scalar or rank 1 or 2 array INTENT(OUT) argument of type default INTEGER. It is set to the

required random integer k or an array of such integers.

2.2.4 Subroutine to obtain the current generator word

The current generator word may be obtained as follows:

CALL RAND get seed( seed, value )

seed is a scalar INTENT(IN) argument of derived type RAND seed that must be provided to hold the seed value.

value is a scalar INTENT(OUT) argument of type default INTEGER. It is set to the current value of the generator

word g.

2.2.5 Subroutine to reset the current value of the generator word

The current value of the generator word may be reset as follows:

CALL RAND set seed( seed, value )

seed is a scalar INTENT(OUT) argument of derived type RAND seed that holds the seed value.

value is a scalar INTENT(IN) argument of type default INTEGER that must be set by the user to the required value

of the generator word. It is recommended that the value should have been obtained by a previous call of

RAND get seed. It should have a value in the range 0 < value ≤ P, where P = 231 − 1 = 2147483647. If it is

outside this range, the value value mod(231− 1) is used.

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

2 RAND (March 18, 2022) GALAHAD



GALAHAD RAND

3 GENERAL INFORMATION

Use of common: None.

Workspace: None.

Other routines called directly: None.

Other modules used directly: None.

Input/output: None.

Restrictions: n > 0.

Portability: ISO Fortran 95 + TR 15581 or Fortran 2003. The package is thread-safe.

4 METHOD

The code is based on that of L.Schrage, “A More Portable Fortran Random Number Generator”, TOMS, 5(2) June

1979. The method employed is a multiplicative congruential method. The generator word g is held as an integer and

is updated on each call as follows

gn+1 = 75gnmod(231
− 1)

The result returned from RAND random real, for a non-negative argument, is ξ, where

ξ = gn+1/(2
31
− 1)

and for a negative argument is

2ξ− 1.

The value of k returned by RAND random integer is

integer partξN + 1.

Arrays or random reals and integers are formed by calling the above sequentially in Fortran column order.

5 EXAMPLE OF USE

Suppose we wish to generate two random real numbers lying between plus and minus one, reset the generator word to
its original value, and then find two positive random integers with values no larger than one hundred. Then we might
use the following piece of code.

! THIS VERSION: GALAHAD 2.6 - 03/07/2014 AT 13:00 GMT.

PROGRAM GALAHAD_RAND_spec

USE GALAHAD_RAND_double

IMPLICIT NONE

TYPE (RAND_seed) seed

INTEGER :: random_integer, value

REAL ( kind = KIND( 1.0D+0 ) ) :: random_real

! Initialize the generator word

CALL RAND_initialize( seed ) ! Get the current generator word

CALL RAND_get_seed( seed, value )

WRITE( 6, "( ’ generator word = ’, I0 )" ) value

! Generate a random real in [-1, 1]

CALL RAND_random_real( seed, .FALSE., random_real )

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD RAND (March 18, 2022) 3



RAND GALAHAD

WRITE( 6, "( ’ random real = ’, F5.2 )" ) random_real

! Generate another random real

CALL RAND_random_real( seed, .FALSE., random_real )

WRITE( 6, "( ’ second random real = ’, F5.2 )" ) random_real

! Restore the generator word

CALL RAND_set_seed( seed, value )

! Generate a random integer in [1, 100]

CALL RAND_random_integer( seed, 100, random_integer )

WRITE( 6, "( ’ random integer in [1,100] = ’, I0 )" ) random_integer

! Generate another random integer

CALL RAND_random_integer( seed, 100, random_integer )

WRITE( 6, "( ’ second random integer in [1,100] = ’, I0 )" ) random_integer

END PROGRAM GALAHAD_RAND_spec

This produces the following output:

generator word = 65535

random real = 0.03

second random real = -0.34

random integer in [1,100] = 52

second random integer in [1,100] = 33

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

4 RAND (March 18, 2022) GALAHAD


