
GALAHAD QPA

USER DOCUMENTATION GALAHAD Optimization Library version 4.0

1 SUMMARY

This package uses a working-set method to solve the ℓ1 quadratic programming problem

minimize
x∈IRn

q(x)+ρgvg(x)+ρbvb(x) (1.1)

involving the quadratic objective

q(x) = 1
2 xT Hx+ gTx+ f

and the infeasibilities

vg(x) =
m

∑
i=1

max(cl
i − aT

i x,0)+
m

∑
i=1

max(aT
i x− cu

i ,0)

and

vb(x) =
n

∑
j=1

max(xl
j − x j,0)+

n

∑
j=1

max(x j − xu
j ,0),

where the n by n symmetric matrix H, the vectors g, ai, cl , cu, xl , xu and the scalars f , ρg and ρb are given. Full

advantage is taken of any zero coefficients in the matrix H or the vectors ai. Any of the constraint bounds cl
i , cu

i , xl
j

and xu
j may be infinite.

The package may also be used to solve the quadratic programming problem

minimize
x∈IRn

q(x), (1.2)

subject to the general linear constraints

cl
i ≤ aT

i x ≤ cu
i , i = 1, . . . ,m, (1.3)

and the simple bound constraints

xl
j ≤ x j ≤ xu

j , j = 1, . . . ,n, (1.4)

by automatically adjusting the parameters ρg and ρb in (1.1).

Similarly, the package is capable of solving the bound-constrained ℓ1 quadratic programming problem

minimize
x∈IRn

q(x)+ρgvg(x), (1.5)

subject to the simple bound constraints (1.4), by automatically adjusting ρb in (1.1).

If the matrix H is positive semi-definite, a global solution is found. However, if H is indefinite, the procedure may

find a (weak second-order) critical point that is not the global solution to the given problem.

N.B. In many cases, the alternative GALAHAD quadratic programming package GALAHAD QPB is faster, and thus to

be preferred.

ATTRIBUTES — Versions: GALAHAD QPA single, GALAHAD QPA double. Uses: GALAHAD CLOCK, GALAHAD SYM-

BOLS, GALAHAD NORMS, GALAHAD SPACE, GALAHAD RAND, GALAHAD TOOLS, GALAHAD ROOTS, GALAHAD SORT, GALAHAD -

SMT, GALAHAD QPT, GALAHAD QPP, GALAHAD QPD, GALAHAD SLS, GALAHAD SPECFILE, GALAHAD SCU. Date: October

2001. Origin: N. I. M. Gould, Rutherford Appleton Laboratory, and Ph. L. Toint, University of Namur, Belgium.

Language: Fortran 95 + TR 15581 or Fortran 2003. Parallelism: Some options may use OpenMP and its runtime

library.

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD QPA (March 18, 2022) 1

QPA GALAHAD

2 HOW TO USE THE PACKAGE

Access to the package requires a USE statement such as

Single precision version

USE GALAHAD QPA single

Double precision version

USE GALAHAD QPA double

If it is required to use both modules at the same time, the derived types SMT type, QPT problem type, QPA time type,

QPA control type, QPA inform type and QPA data type (Section 2.4) and the subroutines QPA initialize, QPA -

solve, QPA terminate, (Section 2.5) and QPA read specfile (Section 2.7) must be renamed on one of the USE

statements.

2.1 Matrix storage formats

Both the Hessian matrix H and the constraint Jacobian A, the matrix whose rows are the vectors aT
i , i = 1, . . . ,m, may

be stored in a variety of input formats.

2.1.1 Dense storage format

The matrix A is stored as a compact dense matrix by rows, that is, the values of the entries of each row in turn are

stored in order within an appropriate real one-dimensional array. Component n∗ (i−1)+ j of the storage array A%val

will hold the value ai j for i = 1, . . . ,m, j = 1, . . . ,n. Since H is symmetric, only the lower triangular part (that is the

part hi j for 1 ≤ j ≤ i ≤ n) need be held. In this case the lower triangle will be stored by rows, that is component

i∗ (i− 1)/2+ j of the storage array H%val will hold the value hi j (and, by symmetry, h ji) for 1 ≤ j ≤ i ≤ n.

2.1.2 Sparse co-ordinate storage format

Only the nonzero entries of the matrices are stored. For the l-th entry of A, its row index i, column index j and value ai j

are stored in the l-th components of the integer arrays A%row, A%col and real array A%val. The order is unimportant,

but the total number of entries A%ne is also required. The same scheme is applicable to H (thus requiring integer arrays

H%row, H%col, a real array H%val and an integer value H%ne), except that only the entries in the lower triangle need be

stored.

2.1.3 Sparse row-wise storage format

Again only the nonzero entries are stored, but this time they are ordered so that those in row i appear directly before

those in row i+ 1. For the i-th row of A, the i-th component of a integer array A%ptr holds the position of the first

entry in this row, while A%ptr (m+1) holds the total number of entries plus one. The column indices j and values ai j

of the entries in the i-th row are stored in components l = A%ptr(i), . . . ,A%ptr (i+ 1)− 1 of the integer array A%col,

and real array A%val, respectively. The same scheme is applicable to H (thus requiring integer arrays H%ptr, H%col,

and a real array H%val), except that only the entries in the lower triangle need be stored.

For sparse matrices, this scheme almost always requires less storage than its predecessor.

2.1.4 Diagonal storage format

If H is diagonal (i.e., hi j = 0 for all 1 ≤ i 6= j ≤ n) only the diagonals entries hii, 1 ≤ i ≤ n, need be stored, and the first

n components of the array H%val may be used for the purpose. There is no sensible equivalent for the non-square A.

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

2 QPA (March 18, 2022) GALAHAD

GALAHAD QPA

2.2 Integer kinds

We use the term long INTEGER to denote INTEGER(kind=long), where long = selected int kind(18)).

2.3 OpenMP

OpenMP may be used by the GALAHAD QPA package to provide parallelism for some solver options in shared memory

environments. See the documentation for the GALAHAD package SLS for more details. To run in parallel, OpenMP

must be enabled at compilation time by using the correct compiler flag (usually some variant of -openmp). The number

of threads may be controlled at runtime by setting the environment variable OMP NUM THREADS.

The code may be compiled and run in serial mode.

2.4 The derived data types

Six derived data types are accessible from the package.

2.4.1 The derived data type for holding matrices

The derived data type SMT TYPE is used to hold the matrices A and H. The components of SMT TYPE used here are:

m is a scalar component of type default INTEGER, that holds the number of rows in the matrix.

n is a scalar component of type default INTEGER, that holds the number of columns in the matrix.

ne is a scalar variable of type default INTEGER, that holds the number of matrix entries.

type is a rank-one allocatable array of type default CHARACTER, that is used to indicate the matrix storage scheme

used. Its precise length and content depends on the type of matrix to be stored (see §2.4.2).

val is a rank-one allocatable array of type default REAL (double precision in GALAHAD QPA double) and dimension

at least ne, that holds the values of the entries. Each pair of off-diagonal entries hi j = h ji of a symmetric matrix

H is represented as a single entry (see §2.1.1–2.1.3). Any duplicated entries that appear in the sparse co-ordinate

or row-wise schemes will be summed.

row is a rank-one allocatable array of type default INTEGER, and dimension at least ne, that may hold the row indices

of the entries. (see §2.1.2).

col is a rank-one allocatable array of type default INTEGER, and dimension at least ne, that may hold the column

indices of the entries (see §2.1.2–2.1.3).

ptr is a rank-one allocatable array of type default INTEGER, and dimension at least m + 1, that may hold the pointers

to the first entry in each row (see §2.1.3).

2.4.2 The derived data type for holding the problem

The derived data type QPT problem type is used to hold the problem. The components of QPT problem type are:

new problem structure is a scalar variable of type default LOGICAL, that is .TRUE. if this is the first (or only)

problem in a sequence of problems with identical ”structure” to be attempted, and .FALSE. if a previous

problem with the same ”structure” (but different numerical data) has been solved. Here, the term ”structure”

refers both to the sparsity patterns of the Jacobian matrices A involved (but not their numerical values), to the

zero/nonzero/infinity patterns (a bound is either zero, ± infinity, or a finite but arbitrary nonzero) of each of

the constraint bounds, and to the variables and constraints that are fixed (both bounds are the same) or free (the

lower and upper bounds are ± infinity, respectively).

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD QPA (March 18, 2022) 3

QPA GALAHAD

n is a scalar variable of type default INTEGER, that holds the number of optimization variables, n.

m is a scalar variable of type default INTEGER, that holds the number of general linear constraints, m.

H is scalar variable of type SMT TYPE that holds the Hessian matrix H. The following components are used:

H%type is an allocatable array of rank one and type default CHARACTER, that is used to indicate the storage

scheme used. If the dense storage scheme (see Section 2.1.1) is used, the first five components of H%type

must contain the string DENSE. For the sparse co-ordinate scheme (see Section 2.1.2), the first ten com-

ponents of H%type must contain the string COORDINATE, for the sparse row-wise storage scheme (see

Section 2.1.3), the first fourteen components of H%type must contain the string SPARSE BY ROWS, and for

the diagonal storage scheme (see Section 2.1.4), the first eight components of H%type must contain the

string DIAGONAL.

For convenience, the procedure SMT put may be used to allocate sufficient space and insert the required

keyword into H%type. For example, if prob is of derived type QPA problem type and involves a Hessian

we wish to store using the co-ordinate scheme, we may simply

CALL SMT_put(prob%H%type, ’COORDINATE’, istat)

See the documentation for the GALAHAD package SMT for further details on the use of SMT put.

H%ne is a scalar variable of type default INTEGER, that holds the number of entries in the lower triangular part

of H in the sparse co-ordinate storage scheme (see Section 2.1.2). It need not be set for any of the other

three schemes.

H%val is a rank-one allocatable array of type default REAL (double precision in GALAHAD QPA double), that

holds the values of the entries of the lower triangular part of the Hessian matrix H in any of the storage

schemes discussed in Section 2.1.

H%row is a rank-one allocatable array of type default INTEGER, that holds the row indices of the lower triangu-

lar part of H in the sparse co-ordinate storage scheme (see Section 2.1.2). It need not be allocated for any

of the other three schemes.

H%col is a rank-one allocatable array variable of type default INTEGER, that holds the column indices of the

lower triangular part of H in either the sparse co-ordinate (see Section 2.1.2), or the sparse row-wise (see

Section 2.1.3) storage scheme. It need not be allocated when the dense or diagonal storage schemes are

used.

H%ptr is a rank-one allocatable array of dimension n+1 and type default INTEGER, that holds the starting posi-

tion of each row of the lower triangular part of H, as well as the total number of entries plus one, in the

sparse row-wise storage scheme (see Section 2.1.3). It need not be allocated when the other schemes are

used.

G is a rank-one allocatable array of dimension n and type default REAL (double precision in GALAHAD QPA double),

that holds the gradient g of the linear term of the quadratic objective function. The j-th component of G,

j = 1, . . . ,n, contains g j.

f is a scalar variable of type default REAL (double precision in GALAHAD QPA double), that holds the constant

term, f , in the objective function.

rho g is a scalar variable of type default REAL (double precision in GALAHAD QPA double), that holds the parameter,

ρg, used to weight the infeasibility term vg(x).

rho b is a scalar variable of type default REAL (double precision in GALAHAD QPA double), that holds the parameter,

ρb, used to weight the infeasibility term vb(x).

A is scalar variable of type SMT TYPE that holds the Jacobian matrix A. The following components are used:

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

4 QPA (March 18, 2022) GALAHAD

GALAHAD QPA

A%type is an allocatable array of rank one and type default CHARACTER, that is used to indicate the storage

scheme used. If the dense storage scheme (see Section 2.1.1) is used, the first five components of A%type

must contain the string DENSE. For the sparse co-ordinate scheme (see Section 2.1.2), the first ten compo-

nents of A%type must contain the string COORDINATE, while for the sparse row-wise storage scheme (see

Section 2.1.3), the first fourteen components of A%type must contain the string SPARSE BY ROWS.

Just as for H%type above, the procedure SMT put may be used to allocate sufficient space and insert the

required keyword into A%type. Once again, if prob is of derived type QPA problem type and involves a

Jacobian we wish to store using the sparse row-wise storage scheme, we may simply

CALL SMT_put(prob%A%type, ’SPARSE_BY_ROWS’, istat)

A%ne is a scalar variable of type default INTEGER, that holds the number of entries in A in the sparse co-ordinate

storage scheme (see Section 2.1.2). It need not be set for either of the other two schemes.

A%val is a rank-one allocatable array of type default REAL (double precision in GALAHAD QPA double), that

holds the values of the entries of the Jacobian matrix A in any of the storage schemes discussed in Sec-

tion 2.1.

A%row is a rank-one allocatable array of type default INTEGER, that holds the row indices of A in the sparse co-

ordinate storage scheme (see Section 2.1.2). It need not be allocated for either of the other two schemes.

A%col is a rank-one allocatable array variable of type default INTEGER, that holds the column indices of A in

either the sparse co-ordinate (see Section 2.1.2), or the sparse row-wise (see Section 2.1.3) storage scheme.

It need not be allocated when the dense storage scheme is used.

A%ptr is a rank-one allocatable array of dimension m+1 and type default INTEGER, that holds the starting po-

sition of each row of A, as well as the total number of entries plus one, in the sparse row-wise storage

scheme (see Section 2.1.3). It need not be allocated when the other schemes are used.

C l is a rank-one allocatable array of dimension m and type default REAL (double precision in GALAHAD QPA double),

that holds the vector of lower bounds cl on the general constraints. The i-th component of C l, i = 1, . . . ,m,

contains cl
i . Infinite bounds are allowed by setting the corresponding components of C l to any value smaller

than -infinity, where infinity is a component of the control array control (see Section 2.4.3).

C u is a rank-one allocatable array of dimension m and type default REAL (double precision in GALAHAD QPA double),

that holds the vector of upper bounds cu on the general constraints. The i-th component of C u, i = 1, . . . ,m,

contains cu
i . Infinite bounds are allowed by setting the corresponding components of C u to any value larger than

infinity, where infinity is a component of the control array control (see Section 2.4.3).

X l is a rank-one allocatable array of dimension n and type default REAL (double precision in GALAHAD QPA double),

that holds the vector of lower bounds xl on the the variables. The j-th component of X l, j = 1, . . . ,n, contains

xl
j. Infinite bounds are allowed by setting the corresponding components of X l to any value smaller than

-infinity, where infinity is a component of the control array control (see Section 2.4.3).

X u is a rank-one allocatable array of dimension n and type default REAL (double precision in GALAHAD QPA double),

that holds the vector of upper bounds xu on the variables. The j-th component of X u, j = 1, . . . ,n, contains

xu
j . Infinite bounds are allowed by setting the corresponding components of X u to any value larger than that

infinity, where infinity is a component of the control array control (see Section 2.4.3).

X is a rank-one allocatable array of dimension n and type default REAL (double precision in GALAHAD QPA double),

that holds the values x of the optimization variables. The j-th component of X, j = 1, . . . ,n, contains x j.

Z is a rank-one allocatable array of dimension n and type default REAL (double precision in GALAHAD QPA double),

that holds the values z of estimates of the dual variables corresponding to the simple bound constraints (see

Section 4). The j-th component of Z, j = 1, . . . ,n, contains z j .

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD QPA (March 18, 2022) 5

QPA GALAHAD

C is a rank-one allocatable array of dimension m and type default REAL (double precision in GALAHAD QPA double),

that holds the values Ax of the constraints. The i-th component of C, i = 1, . . . ,m, contains aT
i x ≡ (Ax)i.

Y is a rank-one allocatable array of dimension m and type default REAL (double precision in GALAHAD QPA double),

that holds the values y of estimates of the Lagrange multipliers corresponding to the general linear constraints

(see Section 4). The i-th component of Y, i = 1, . . . ,m, contains yi.

2.4.3 The derived data type for holding control parameters

The derived data type QPA control type is used to hold controlling data. Default values may be obtained by calling

QPA initialize (see Section 2.5.1), while components may also be changed by calling GALAHAD QPA read spec

(see Section 2.7.1). The components of QPA control type are:

error is a scalar variable of type default INTEGER, that holds the stream number for error messages. Printing of error

messages in QPA solve and QPA terminate is suppressed if error ≤ 0. The default is error = 6.

out is a scalar variable of type default INTEGER, that holds the stream number for informational messages. Printing

of informational messages in QPA solve is suppressed if out < 0. The default is out = 6.

print level is a scalar variable of type default INTEGER, that is used to control the amount of informational output

which is required. No informational output will occur if print level ≤ 0. If print level = 1, a single line

of output will be produced for each iteration of the process. If print level ≥ 2, this output will be increased

to provide significant detail of each iteration. The default is print level = 0.

maxit is a scalar variable of type default INTEGER, that holds the maximum number of iterations which will be

allowed in QPA solve. The default is maxit = 1000.

start print is a scalar variable of type default INTEGER, that specifies the first iteration for which printing will occur

in QPA solve. If start print is negative, printing will occur from the outset. The default is start print =

-1.

stop print is a scalar variable of type default INTEGER, that specifies the last iteration for which printing will occur

in QPA solve. If stop print is negative, printing will occur once it has been started by start print. The

default is stop print = -1.

factor is a scalar variable of type default INTEGER, that indicates the type of factorization of the preconditioner to

be used. Possible values are:

0 the type is chosen automatically on the basis of which option looks likely to be the most efficient.

1 a Schur-complement factorization will be used.

2 an augmented-system factorization will be used.

The default is factor = 0.

max col is a scalar variable of type default INTEGER, that specifies the maximum number of nonzeros in a column of

A which is permitted by the Schur-complement factorization. The default is max col = 35.

max sc is a scalar variable of type default INTEGER, that specifies the maximum number of columns permitted in the

Schur complement of the reference matrix (see Section 4) before a refactorization is triggered. The default is

max sc = 75.

itref max is a scalar variable of type default INTEGER, that specifies the maximum number of iterative refinements

allowed with each application of the preconditioner. The default is itref max = 1.

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

6 QPA (March 18, 2022) GALAHAD

GALAHAD QPA

cg maxit is a scalar variable of type default INTEGER, that holds the maximum number of conjugate-gradient inner

iterations that may be performed during the computation of each search direction in QPA solve. If cg itmax is

set to a negative number, it will be reset by QPA solve to the dimension of the relevant linear system +1. The

default is cg itmax = -1.

precon is a scalar variable of type default INTEGER, that specifies which preconditioner to be used to accelerate the

conjugate-gradient inner iteration. Possible values are:

0 the type is chosen automatically on the basis of which option looks likely to be the most efficient at any given

stage of the solution process. Different preconditioners may be used at different stages.

1 a full factorization using the Hessian, which is equivalent to replacing the conjugate gradient inner iteration

by a direct method. The Hessian may be perturbed to ensure that the resultant matrix is a preconditioner.

2 the Hessian matrix is replaced by the identity matrix.

3 the Hessian matrix is replaced by a band of given semi-bandwidth (see nsemib below).

4 the Hessian matrix terms in the current reference matrix (see Section 4) are replaced by the identity matrix.

5 the Hessian matrix terms outside a band of given semi-bandwidth in the current reference matrix are replaced

by zeros (see nsemib below).

The default is precon = 0.

nsemib is a scalar variable of type default INTEGER, that specifies the semi-bandwidth of the band preconditioner

when precon = 3, if appropriate. The default is nsemib = 5.

full max fill is a scalar variable of type default INTEGER. If the ratio of the number of nonzeros in the factors of

the reference matrix (see Section 4) to the number of nonzeros in the matrix itself exceeds full max fil, and

the preconditioner is being selected automatically (precon = 0), a banded approximation (see precon = 3)

will be used instead. The default is full max fill = 10.

deletion strategy is a scalar variable of type default INTEGER, that specifies the rules used to determine which

constraint to remove from the working set (see Section 4) when necessary to ensure further progress towards the

solution. Possible values are:

0 the constraint whose Lagrange multiplier most violates its required optimality bound will be removed.

1 the most-recently added constraint whose Lagrange multiplier violates its required optimality bound will be

removed.

k > 1 among the k most-recently added constraints whose Lagrange multipliers violates their required opti-

mality bounds, the one which most violates its bound will be removed.

The default is deletion strategy = 0.

restore problem is a scalar variable of type default INTEGER, that specifies how much of the input problem is to be

retored on output. Possible values are:

0 nothing is restored.

1 the vector data g, cl , cu, xl , and xu will be restored to their input values.

2 the entire problem, that is the above vector data along with the Hessian matrix H and the Jacobian matrix A,

will be restored.

The default is restore problem = 2.

monitor residuals is a scalar variable of type default INTEGER, that specifies the frequency at which working con-

straint residuals will be monitored to ensure feasibility. The residuals will be monitored every monitor residu-

al iterations. The default is monitor residuals = 1.

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD QPA (March 18, 2022) 7

QPA GALAHAD

cold start is a scalar variable of type default INTEGER, that controls the initial working set (see Section 4)). Possible

values are:

0 a ”warm start” will be performed. The values set in C stat and B stat indicate which constraints will be

included in the initial working set. (see C stat and B stat in Section 2.5.2).

1 the constraints ”active” at p%X (see Section 2.5.2) will determine the initial working set.

2 the initial working set will be empty.

3 the initial working set will only contain equality constraints.

4 the initial working set will contain as many active constraints as possible, chosen (in order) from equality

constraints, simple bounds, and finally general linear constraints.

The default is cold start = 3.

infeas check interval is a scalar variable of type default INTEGER, that gives the number of iterations that are

permitted before the infeasibility is checked for improvement. The default is infeas check interval = 100.

infinity is a scalar variable of type default REAL (double precision in GALAHAD QPA double), that is used to specify

which constraint bounds are infinite. Any bound larger than infinity in modulus will be regarded as infinite.

The default is infinity = 1019.

feas tol is a scalar variable of type default REAL (double precision in GALAHAD QPA double), that specifies the

maximum amount by which a constraint may be violated and yet still be considered to be satisfied. The default

is feas tol = u3/4, where u is EPSILON(1.0) (EPSILON(1.0D0) in GALAHAD QPA double).

obj unbounded is a scalar variable of type default REAL (double precision in GALAHAD QPA double), that specifies

smallest value of the objective function that will be tolerated before the problem is declared to be unbounded

from below. The default is potential unbounded = −u−2, where u is EPSILON(1.0) (EPSILON(1.0D0) in

GALAHAD QPA double).

increase rho g factor is a scalar variable of type default REAL (double precision in GALAHAD QPA double), that

gives the factor by which the current penalty parameter ρg for the general constraints may be increased when

solving quadratic programs. The default is increase rho g factor = 2.

increase rho b factor is a scalar variable of type default REAL (double precision in GALAHAD QPA double), that

gives the factor by which the current penalty parameter ρb for the simple bound constraints may be increased

when solving quadratic programs. The default is increase rho b factor = 2.

infeas g improved by factor is a scalar variable of type default REAL (double precision in GALAHAD QPA double),

that specifies the relative improvement in the infeasibility that must be achieved when solving quadratic pro-

grams if the current value of ρg is to be maintained. Specifically if the infeasibility of the general constraints has

not fallen by at least a factor infeas g improved by factor during the previous infeas check interval it-

erations, the penalty parameter will be increased by a factor increase rho g factor. The default is infeas im-

proved g by factor = 0.75.

infeas b improved by factor is a scalar variable of type default REAL (double precision in GALAHAD QPA double),

that specifies the relative improvement in the infeasibility that must be achieved when solving quadratic pro-

grams if the current value of ρb is to be maintained. Specifically if the infeasibility of the simple bound con-

straints has not fallen by at least a factor infeas b improved by factor during the previous infeas check in-

terval iterations, the penalty parameter will be increased by a factor increase rho b factor. The default is

infeas improved b by factor = 0.75.

pivot tol for dependencies is a scalar variable of type default REAL (double precision in GALAHAD QPA double),

that holds the relative threshold pivot tolerance used by the matrix factorization when attempting to detect

linearly dependent constraints. A value larger than pivot tol is appropriate. See the documentation for the

package SLS for details. The default is pivot tol for dependencies = 0.5.

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

8 QPA (March 18, 2022) GALAHAD

GALAHAD QPA

multiplier tol is a scalar variable of type default REAL (double precision in GALAHAD QPA double). Any dual

variable or Lagrange multiplier which is less than multiplier tol outside its optimal interval will be regarded

as being acceptable when checking for optimality. The default is zero pivot =
√

u, where u is EPSILON(1.0)

(EPSILON(1.0D0) in GALAHAD QPA double).

inner stop relative and inner stop absolute are scalar variables of type default REAL (double preci-

sion in GALAHAD QPA double), that hold the relative and absolute convergence tolerances for the in-

ner iteration (search direction) problem. and correspond to the values control%stop relative and

control%stop absolute in the GALAHAD package GALAHAD GLTR. The defaults are inner stop relative =

0.0 and inner stop absolute =
√

u, where u is EPSILON(1.0) (EPSILON(1.0D0) in GALAHAD QPA double).

cpu time limit is a scalar variable of type default REAL (double precision in GALAHAD QPA double), that is used to

specify the maximum permitted CPU time. Any negative value indicates no limit will be imposed. The default

is cpu time limit = - 1.0.

clock time limit is a scalar variable of type default REAL (double precision in GALAHAD QPA double), that is used

to specify the maximum permitted elapsed system clock time. Any negative value indicates no limit will be

imposed. The default is clock time limit = - 1.0.

treat zero bounds as general is a scalar variable of type default LOGICAL. If it is set to .FALSE., variables which

are only bounded on one side, and whose bound is zero, will be recognised as non-negativities/non-positivities

rather than simply as lower- or upper-bounded variables. If it is set to .TRUE., any variable bound xl
j or xu

j

which has the value 0.0 will be treated as if it had a general value. Setting treat zero bounds as general to

.TRUE. has the advantage that if a sequence of problems are reordered, then bounds which are “accidentally”

zero will be considered to have the same structure as those which are nonzero. However, GALAHAD QPA is able to

take special advantage of non-negativities/non-positivities, so if a single problem, or if a sequence of problems

whose bound structure is known not to change, is/are to be solved, it will pay to set the variable to .FALSE..

The default is treat zero bounds as general = .FALSE..

solve qp is a scalar variable of type default LOGICAL, that must be set .TRUE. if the algorithm will aim to solve

the quadratic programming problem (1.2)–(1.4) (by adjusting ρg and ρb as necessary), and and .FALSE. if the

solution of the l1-quadratic program for the specified values of ρg and ρb is required. The default is solve qp

= .FALSE..

solve within bounds is a scalar variable of type default LOGICAL, that must be set .TRUE. if the algorithm will aim

to solve the bound-constrained ℓ1 quadratic programming problem (1.4)–(1.5) (by adjusting ρb as necessary),

and and .FALSE. otherwise. If solve qp is .TRUE., the value of solve within bounds will be ignored. The

default is solve within bounds = .FALSE..

ramdomize is a scalar variable of type default LOGICAL, that must be set .TRUE. if the user wishes to perturb the con-

straint bounds by small random quantities during the first stage of the solution process, and .FALSE. otherwise.

Any randomization will ultimately be removed. Randomization helps when solving degenerate problems and is

usually to be recommended. The default is randomize = .TRUE..

symmetric linear solver is a scalar variable of type default CHARACTER and length 30, that specifies the external

package to be used to solve any symmetric linear system that might arise. Current possible choices are ’sils’,

’ma27’, ’ma57’, ’ma77’, ’ma86’, ’ma97’, ssids, ’pardiso’ and ’wsmp’, although only ’sils’ and, for

OMP 4.0-compliant compilers, ’ssids’ are installed by default. See the documentation for the GALAHAD

package SLS for further details. The default is symmetric linear solver = ’sils’.

definite linear solver is a scalar variable of type default CHARACTER and length 30, that specifies the external

package to be used to solve any symmetric positive-definite linear system that might arise. Current possible

choices are ’sils’, ’ma27’, ’ma57’, ’ma77’, ’ma86’, ’ma87’, ’ma97’, ssids, ’pardiso’ and ’wsmp’,

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD QPA (March 18, 2022) 9

QPA GALAHAD

although only ’sils’ and, for OMP 4.0-compliant compilers, ’ssids’ are installed by default. See the doc-

umentation for the GALAHAD package SLS for further details. The default is definite linear solver =

’sils’.

prefix is a scalar variable of type default CHARACTER and length 30, that may be used to provide a user-selected

character string to preface every line of printed output. Specifically, each line of output will be prefaced by the

string prefix(2:LEN(TRIM(prefix))-1), thus ignoring the first and last non-null components of the supplied

string. If the user does not want to preface lines by such a string, they may use the default prefix = "".

SLS control is a scalar variable argument of type SLS control type that is used to pass control options to external

packages used to factorize relevant symmetric matrices that arise. See the documentation for the GALAHAD

package SLS for further details. In particular, default values are as for SLS, except that SLS control%rela-

tive pivot tolerance is reset to pivot tol.

2.4.4 The derived data type for holding timing information

The derived data type QPA time type is used to hold elapsed CPU and system clock times for the various parts of the

calculation. The components of QPA time type are:

total is a scalar variable of type default REAL (double precision in GALAHAD QPA double), that gives the total CPU

time spent in the package.

preprocess is a scalar variable of type default REAL (double precision in GALAHAD QPA double), that gives the CPU

time spent reordering the problem to standard form prior to solution.

analyse is a scalar variable of type default REAL (double precision in GALAHAD QPA double), that gives the CPU

time spent analysing the required matrices prior to factorization.

factorize is a scalar variable of type default REAL (double precision in GALAHAD QPA double), that gives the CPU

time spent factorizing the required matrices.

solve is a scalar variable of type default REAL (double precision in GALAHAD QPA double), that gives the CPU time

spent computing the search direction.

clock total is a scalar variable of type default REAL (double precision in GALAHAD QPA double), that gives the total

elapsed system clock time spent in the package.

clock preprocess is a scalar variable of type default REAL (double precision in GALAHAD QPA double), that gives

the elapsed system clock time spent reordering the problem to standard form prior to solution.

clock analyse is a scalar variable of type default REAL (double precision in GALAHAD QPA double), that gives the

elapsed system clock time spent analysing the required matrices prior to factorization.

clock factorize is a scalar variable of type default REAL (double precision in GALAHAD QPA double), that gives the

elapsed system clock time spent factorizing the required matrices.

clock solve is a scalar variable of type default REAL (double precision in GALAHAD QPA double), that gives the

elapsed system clock time spent computing the search direction.

2.4.5 The derived data type for holding informational parameters

The derived data type QPA inform type is used to hold parameters that give information about the progress and needs

of the algorithm. The components of QPA inform type are:

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

10 QPA (March 18, 2022) GALAHAD

GALAHAD QPA

status is a scalar variable of type default INTEGER, that gives the exit status of the algorithm. See Section 2.6 for

details.

alloc status is a scalar variable of type default INTEGER, that gives the status of the last attempted array allocation

or deallocation. This will be 0 if status = 0.

bad alloc is a scalar variable of type default CHARACTER and length 80, that gives the name of the last internal array

for which there were allocation or deallocation errors. This will be the null string if status = 0.

major iter is a scalar variable of type default INTEGER, that gives the total number of major iterations required.

iter is a scalar variable of type default INTEGER, that gives the total number of iterations required.

cg iter is a scalar variable of type default INTEGER, that gives the total number of conjugate-gradient inner iterations

required.

factorization status is a scalar variable of type default INTEGER, that gives the return status from the matrix

factorization.

factorization integer is a scalar variable of type long INTEGER, that gives the amount of integer storage used for

the matrix factorization.

factorization real is a scalar variable of type long INTEGER, that gives the amount of real storage used for the

matrix factorization.

nfacts is a scalar variable of type default INTEGER, that gives the total number of factorizations performed.

nmods is a scalar variable of type default INTEGER, that gives the total number of factorizations which were modified

to ensure that the matrix is an appropriate preconditioner.

num g infeas is a scalar variable of type default INTEGER, that gives the total number of general constraints that are

violated.

num b infeas is a scalar variable of type default INTEGER, that gives the total number of simple bound constraints

that are violated.

obj is a scalar variable of type default REAL (double precision in GALAHAD QPA double), that holds the value of the

objective function at the best estimate of the solution found.

infeas g is a scalar variable of type default REAL (double precision in GALAHAD QPA double), that holds the value of

the infeasibility vg(x).

infeas b is a scalar variable of type default REAL (double precision in GALAHAD QPA double), that holds the value of

the infeasibility vb(x).

merit is a scalar variable of type default REAL (double precision in GALAHAD QPA double), that holds the value of the

merit function q(x)+ρgvg(x)+ρbvb(x) at the best estimate of the solution found.

time is a scalar variable of type QPA time type whose components are used to hold elapsed CPU and system clock

times for the various parts of the calculation (see Section 2.4.4).

SLS inform is a scalar variable argument of type SLS inform type that is used to pass information concerning the

progress of the external packages used to factorize relevant symmetric matrices that arise. See the documentation

for the GALAHAD package SLS for further details.

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD QPA (March 18, 2022) 11

QPA GALAHAD

2.4.6 The derived data type for holding problem data

The derived data type QPA data type is used to hold all the data for a particular problem, or sequences of problems

with the same structure, between calls of QPA procedures. This data should be preserved, untouched, from the initial

call to QPA initialize to the final call to QPA terminate.

2.5 Argument lists and calling sequences

There are three procedures for user calls (see Section 2.7 for further features):

1. The subroutine QPA initialize is used to set default values, and initialize private data, before solving one or

more problems with the same sparsity and bound structure.

2. The subroutine QPA solve is called to solve the problem.

3. The subroutine QPA terminate is provided to allow the user to automatically deallocate array components of

the private data, allocated by QPA solve, at the end of the solution process. It is important to do this if the data

object is re-used for another problem with a different structure since QPA initialize cannot test for this

situation, and any existing associated targets will subsequently become unreachable.

2.5.1 The initialization subroutine

Default values are provided as follows:

CALL QPA initialize(data, control, inform)

data is a scalar INTENT(INOUT) argument of type QPA data type (see Section 2.4.6). It is used to hold data about

the problem being solved.

control is a scalar INTENT(OUT) argument of type QPA control type (see Section 2.4.3). On exit, control con-

tains default values for the components as described in Section 2.4.3. These values should only be changed after

calling QPA initialize.

inform is a scalar INTENT(INOUT) argument of type QPA inform type (see Section 2.4.5). A successful call to

QPA initialize is indicated when the component status has the value 0. For other return values of status,

see Section 2.6.

2.5.2 The quadratic programming subroutine

The quadratic programming solution algorithm is called as follows:

CALL QPA solve(p, C stat, B stat, data, control, info)

p is a scalar INTENT(INOUT) argument of type QPT problem type (see Section 2.4.2). It is used to hold data

about the problem being solved. For a new problem, the user must allocate all the array components, and

set values for all components except p%C. p%new problem structure must be set .TRUE., but will have been

reset to .FALSE. on exit from QPA solve. Users are free to choose whichever of the matrix formats described in

Section 2.1 is appropriate for A and H for their application—different formats may be used for the two matrices.

For a problem with the same structure as one that has just been solved, the user may set p%new problem str-

ucture to .FALSE., so long as QPA terminate has not been called in the interim. The INTEGER components

must be unaltered since the previous call to QPA solve, but the REAL (double precision in GALAHAD QPA double)

may be altered to reflect the new problem.

The components p%X, p%Y and p%Z must be set to initial estimates, x0, of the primal variables, x, Lagrange

multipliers for the general constraints, y, and dual variables for the bound constraints, z, respectively. Inappro-

priate initial values will be altered, so the user should not be overly concerned if suitable values are not apparent,

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

12 QPA (March 18, 2022) GALAHAD

GALAHAD QPA

and may be content with merely setting p%X=0.0, p%Y=0.0 and p%Z=0.0. The component p%C need not be set

on entry.

On exit, the components p%X, p%Y, p%Z and p%C will contain the best estimates of the primal variables x,

Lagrange multipliers for the general constraints y, dual variables for the bound constraints z, and values of

the constraints Ax respectively. The components p%rho g and p%rho b may have been altered if either of

control%solve qp or control%solve within bounds have been set .TRUE. and will reflect the final values

of ρg and ρb used. What of the remaining problem data has been restored depends upon the input value of the

control parameter control%restore problem. The return format for a restored array component will be the

same as its input format. Restrictions: p%n > 0, p%m ≥ 0, p%A%ne ≥−2 and p%H%ne ≥−2.

C stat is a rank-one INTENT(INOUT) array argument of dimension p%m and type default INTEGER, that indicates

which of the general linear constraints are in the current working set. Possible values for C stat(i), i= 1, . . . ,
p%m, and their meanings are

<0 the i-th general constraint is in the working set, on its lower bound,

>0 the i-th general constraint is in the working set, on its upper bound, and

0 the i-th general constraint is not in the working set.

Suitable values must be supplied if control%cold start = 0 on entry, but need not be provided for other

input values of control%cold start. Inappropriate values will be ignored. On exit, C stat will contain

values appropriate for the ultimate working set.

B stat is a rank-one INTENT(INOUT) array argument of dimension p%n and type default INTEGER, that indicates

which of the simple bound constraints are in the current working set. Possible values for B stat(j), j= 1, . . . ,
p%n, and their meanings are

<0 the j-th simple bound constraint is in the working set, on its lower bound,

>0 the j-th simple bound constraint is in the working set, on its upper bound, and

0 the j-th simple bound constraint is not in the working set.

Suitable values must be supplied if control%cold start = 0 on entry, but need not be provided for other

input values of control%cold start. Inappropriate values will be ignored. On exit, B stat will contain

values appropriate for the ultimate working set.

data is a scalar INTENT(INOUT) argument of type QPA data type (see Section 2.4.6). It is used to hold data about

the problem being solved. It must not have been altered by the user since the last call to QPA initialize.

control is a scalar INTENT(IN) argument of type QPA control type (see Section 2.4.3). Default values may be

assigned by calling QPA initialize prior to the first call to QPA solve.

inform is a scalar INTENT(OUT) argument of type QPA inform type (see Section 2.4.5). A successful call to

QPA solve is indicated when the component status has the value 0. For other return values of status, see

Section 2.6.

2.5.3 The termination subroutine

All previously allocated arrays are deallocated as follows:

CALL QPA terminate(data, control, info)

data is a scalar INTENT(INOUT) argument of type QPA data type exactly as for QPA solve, which must not have

been altered by the user since the last call to QPA initialize. On exit, array components will have been

deallocated.

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD QPA (March 18, 2022) 13

QPA GALAHAD

control is a scalar INTENT(IN) argument of type QPA control type exactly as for QPA solve.

inform is a scalar INTENT(OUT) argument of type QPA inform type exactly as for QPA solve. Only the component

status will be set on exit, and a successful call to QPA terminate is indicated when this component status

has the value 0. For other return values of status, see Section 2.6.

2.6 Warning and error messages

A negative value of inform%status on exit from QPA solve or QPA terminate indicates that an error has occurred.

No further calls should be made until the error has been corrected. Possible values are:

-1. An allocation error occurred. A message indicating the offending array is written on unit control%error, and the

returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc respectively.

-2. A deallocation error occurred. A message indicating the offending array is written on unit control%error and

the returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc respectively.

-3. One of the restrictions prob%n > 0 or prob%m ≥ 0 or requirements that prob%A type and prob%H type contain

its relevant string ’DENSE’, ’COORDINATE’,’SPARSE BY ROWS’ or ’DIAGONAL’ has been violated.

-5. The constraints appear to have no feasible point.

-7. The objective function appears to be unbounded from below on the feasible set.

-9. The analysis phase of the factorization failed; the return status from the factorization package is given in the

component inform%factor status.

-10. The factorization failed; the return status from the factorization package is given in the component inform%fac-

tor status.

-16. The problem is so ill-conditioned that further progress is impossible.

-18. Too many iterations have been performed. This may happen if control%maxit is too small, but may also be

symptomatic of a badly scaled problem.

-19. The elapsed CPU or system clock time limit has been reached. This may happen if either control%cpu time limit

or control%clock time limit is too small, but may also be symptomatic of a badly scaled problem.

-23. An entry from the strict upper triangle of H has been specified.

2.7 Further features

In this section, we describe an alternative means of setting control parameters, that is components of the variable

control of type QPA control type (see Section 2.4.3), by reading an appropriate data specification file using the

subroutine QPA read specfile. This facility is useful as it allows a user to change QPA control parameters without

editing and recompiling programs that call QPA.

A specification file, or specfile, is a data file containing a number of ”specification commands”. Each command

occurs on a separate line, and comprises a ”keyword”, which is a string (in a close-to-natural language) used to identify

a control parameter, and an (optional) ”value”, which defines the value to be assigned to the given control parameter.

All keywords and values are case insensitive, keywords may be preceded by one or more blanks but values must not

contain blanks, and each value must be separated from its keyword by at least one blank. Values must not contain more

than 30 characters, and each line of the specfile is limited to 80 characters, including the blanks separating keyword

and value.

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

14 QPA (March 18, 2022) GALAHAD

GALAHAD QPA

The portion of the specification file used by QPA read specfile must start with a ”BEGIN QPA” command and

end with an ”END” command. The syntax of the specfile is thus defined as follows:

(.. lines ignored by QPA_read_specfile ..)

BEGIN QPA

keyword value

.......

keyword value

END

(.. lines ignored by QPA_read_specfile ..)

where keyword and value are two strings separated by (at least) one blank. The “BEGIN QPA” and “END” delimiter

command lines may contain additional (trailing) strings so long as such strings are separated by one or more blanks,

so that lines such as

BEGIN QPA SPECIFICATION

and

END QPA SPECIFICATION

are acceptable. Furthermore, between the “BEGIN QPA” and “END” delimiters, specification commands may occur in

any order. Blank lines and lines whose first non-blank character is ! or * are ignored. The content of a line after a !

or * character is also ignored (as is the ! or * character itself). This provides an easy manner to ”comment out” some

specification commands, or to comment specific values of certain control parameters.

The value of a control parameters may be of three different types, namely integer, logical or real. Integer and real

values may be expressed in any relevant Fortran integer and floating-point formats (respectively). Permitted values for

logical parameters are ”ON”, ”TRUE”, ”.TRUE.”, ”T”, ”YES”, ”Y”, or ”OFF”, ”NO”, ”N”, ”FALSE”, ”.FALSE.” and ”F”.

Empty values are also allowed for logical control parameters, and are interpreted as ”TRUE”.

The specification file must be open for input when QPA read specfile is called, and the associated device number

passed to the routine in device (see below). Note that the corresponding file is REWINDed, which makes it possible

to combine the specifications for more than one program/routine. For the same reason, the file is not closed by

QPA read specfile.

2.7.1 To read control parameters from a specification file

Control parameters may be read from a file as follows:

CALL QPA_read_specfile(control, device)

control is a scalar INTENT(INOUT)argument of type QPA control type (see Section 2.4.3). Default values should

have already been set, perhaps by calling QPA initialize. On exit, individual components of control may

have been changed according to the commands found in the specfile. Specfile commands and the component

(see Section 2.4.3) of control that each affects are given in Table 2.1.

device is a scalar INTENT(IN)argument of type default INTEGER, that must be set to the unit number on which the

specfile has been opened. If device is not open, control will not be altered and execution will continue, but

an error message will be printed on unit control%error.

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD QPA (March 18, 2022) 15

QPA GALAHAD

command component of control value type

error-printout-device %error integer

printout-device %out integer

print-level %print level integer

maximum-number-of-iterations %maxit integer

start-print %start print integer

stop-print %stop print integer

factorization-used %factor integer

maximum-column-nonzeros-in-schur-complement %max col integer

maximum-dimension-of-schur-complement %max sc integer

maximum-refinements %itref max integer

maximum-infeasible-iterations-before-rho-increase %infeas check interval integer

maximum-number-of-cg-iterations %cg maxit integer

preconditioner-used %precon integer

semi-bandwidth-for-band-preconditioner %nsemib integer

full-max-fill-ratio %full max fill integer

deletion-strategy %deletion strategy integer

restore-problem-on-output %restore problem integer

residual-monitor-interval %monitor residuals integer

cold-start-strategy %cold start integer

infinity-value %infinity real

feasibility-tolerance %feas tol real

minimum-objective-before-unbounded %obj unbounded real

increase-rho-g-factor %increase rho g factor real

increase-rho-b-factor %increase rho b factor real

infeasible-g-required-improvement-factor %infeas g improved by factor real

infeasible-b-required-improvement-factor %infeas b improved by factor real

pivot-tolerance-used-for-dependencies %pivot tol for dependencies real

multiplier-tolerance %multiplier tol real

inner-iteration-relative-accuracy-required %inner stop relative real

inner-iteration-absolute-accuracy-required %inner stop absolute real

maximum-cpu-time-limit %cpu time limit real

maximum-clock-time-limit %clock time limit real

treat-zero-bounds-as-general %treat zero bounds as general logical

solve-qp %solve qp logical

solve-within-bounds %solve within bounds logical

temporarily-perturb-constraint-bounds %randomize logical

Table 2.1: Specfile commands and associated components of control.

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

16 QPA (March 18, 2022) GALAHAD

GALAHAD QPA

2.8 Information printed

If control%print level is positive, information about the progress of the algorithm will be printed on unit control-

%out. If control%print level = 1, a single line of output will be produced for each iteration of the process. The

overall algorithm, for a fixed value of the penalty parameter, is divided into major iterations, at which a factorization of

the current reference matrix is performed, and minor iterations, at which the the working set that defines the reference

matrix is gradually modified. For the major iterations, details about the factorization performed are given. Each

minor iteration results in a single line summary of the progress of the method. This includes the value of the merit

function, the step size taken, the size and number of the infeasibility, the number of conjugate-gradient steps taken, the

dimension of the Schur complement, along with the numbers of positive and negative eigenvalues, an brief indication

of what happened during the iteration (the index of the general constraint (c) or simple bound (b) which joined (+) or

left (-) the active set), and the and the elapsed CPU time in seconds.

If control%print level ≥ 2 this output will be increased to provide significant detail of each iteration. This

extra output includes detailed progress of the linesearch and the residuals of the linear systems solved, and, for larger

values of control%print level, values of the primal and dual variables and Lagrange multipliers.

3 GENERAL INFORMATION

Use of common: None.

Workspace: Provided automatically by the module.

Other routines called directly: None.

Other modules used directly: QPA solve calls the GALAHAD packages GALAHAD CLOCK, GALAHAD SYMBOLS,

GALAHAD NORMS, GALAHAD SPACE, GALAHAD RAND, GALAHAD TOOLS, GALAHAD ROOTS, GALAHAD SORT,

GALAHAD SMT, GALAHAD QPT, GALAHAD QPP, GALAHAD QPD, GALAHAD SLS, GALAHAD SPECFILE and

GALAHAD SCU.

Input/output: Output is under control of the arguments control%error, control%out and control%print level.

Restrictions: prob%n > 0, prob%m ≥ 0, prob%A type and prob%H type ∈ {’DENSE’, ’COORDINATE’,

’SPARSE BY ROWS’, ’DIAGONAL’ }.

Portability: ISO Fortran 95 + TR 15581 or Fortran 2003. The package is thread-safe.

4 METHOD

At the k-th iteration of the method, an improvement to the value of the merit function m(x,ρg,ρb) = q(x)+ρgvg(x)+

ρbvb(x) at x = x(k) is sought. This is achieved by first computing a search direction s(k), and then setting x(k+1) =
x(k) +α(k)s(k), where the stepsize α(k) is chosen as the first local minimizer of φ(α) = m(x(k) +αs(k),ρg,ρb) as α
incesases from zero. The stepsize calculation is straightforward, and exploits the fact that φ(α) is a piecewise quadratic

function of α.

The search direction is defined by a subset of the ”active” terms in v(x), i.e., those for which aT
i x = cl

i or cu
i (for

i = 1, . . . ,m) or x j = xl
j or xu

j (for j=1,. . . ,n). The ”working” set W (k) is chosen from the active terms, and is such that

its members have linearly independent gradients. The search direction s(k) is chosen as an approximate solution of the

equality-constrained quadratic program

minimize
s∈IRn

q(x(k)+ s)+ρgl
(k)
g (s)+ρbl

(k)
b (s), (4.1)

subject to

aT
i s = 0, i ∈ {1, . . . ,m}∩W (k), and x j = 0, i ∈ {1, . . . ,n}∩W (k), (4.2)

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD QPA (March 18, 2022) 17

QPA GALAHAD

where

l
(k)
g (s) =−

m

∑
i=1

aT
i x<cl

i

aT
i s +

m

∑
i=1

aT
i x>cu

i

aT
i s

and

l
(k)
b (s) =−

n

∑
j=1

x j<xl
j

s j +
n

∑
j=1

x j>xu
j

s j.

The equality-constrained quadratic program (4.1)–(4.2) is solved by a projected preconditioned conjugate gradient

method. The method terminates either after a prespecified number of iterations, or if the solution is found, or if

a direction of infinite descent, along which q(x(k) + s) + ρgl
(k)
g (s) + ρbl

(k)
b (s) decreases without bound within the

feasible region (4.2), is located. Succesively more accurate approximations are required as suspected solutions of

(1.1) are approached.

Preconditioning of the conjugate gradient iteration requires the solution of one or more linear systems of the form

(

M(k) A(k)T

A(k) 0

)(

p

u

)

=

(

g

0

)

, (4.3)

where M(k) is a ”suitable” approximation to H and the rows of A(k) comprise the gradients of the terms in the current

working set. Rather than recomputing a factorization of the preconditioner at every iteration, a Schur complement

method is used, recognising the fact that gradual changes occur to successive working sets. The main iteration is

divided into a sequence of ”major” iterations. At the start of each major iteration (say, the overall iteration l), a

factorization of the current ”reference” matrix, that is the matrix

(

M(l) A(l)T

A(l) 0

)

(4.4)

is obtained using the GALAHAD matrix factorization package GALAHAD SLS. This reference matrix may be factorized

as a whole (the so-called ”augmented system” approach), or by performing a block elimination first (the ”Schur-

complement” approach). The latter is usually to be preferred when a (non-singular) diagonal preconditioner is used,

but may be inefficient if any of the columns of A(l) is too dense. Subsequent iterations within the current major

iteration obtain solutions to (4.3) via the factors of (4.4) and an appropriate (dense) Schur complement, obtained from

the GALAHAD package GALAHAD SCU. The major iteration terminates once the space required to hold the factors of the

(growing) Schur complement exceeds a given threshold.

The working set changes by (a) adding an active term encountered during the determination of the stepsize, or (b)

the removal of a term if s = 0 solves (4.1)–(4.2). The decision on which to remove in the latter case is based upon

the expected decrease upon the removal of an individual term, and this information is available from the magnitude

and sign of the components of the auxiliary vector u computed in (4.3). At optimality, the components of u for ai

terms will all lie between 0 and ρg—and those for the other terms between 0 and ρb—and any violation of this rule

indicates further progress is possible. The components of u corresonding to the terms involving aT
i x are sometimes

known as Lagrange multipliers (or generalized gradients) and denoted by y, while those for the remaining x j terms are

dual variables and denoted by z.

To solve (1.2)–(1.4), a sequence of problems of the form (1.1) are solved, each with a larger value of ρg and/or ρb

than its predecessor. The required solution has been found once the infeasibilities vg(x) and vb(x) have been reduced

to zero at the solution of (1.1) for the given ρg and ρb.

The required solution x to (1.2)–(1.4) necessarily satisfies the primal optimality conditions

Ax = c

and

cl ≤ c ≤ cu, xl ≤ x ≤ xu,

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

18 QPA (March 18, 2022) GALAHAD

GALAHAD QPA

the dual optimality conditions

Hx+ g = AT y+ z, y = yl + yu and z = zl + zu,

and

yl ≥ 0, yu ≤ 0, zl ≥ 0 and zu ≤ 0,

and the complementary slackness conditions

(Ax− cl)T yl = 0, (Ax− cu)T yu = 0, (x− xl)T zl = 0 and (x− xu)T zu = 0,

where, as before, the vectors y and z are known as the Lagrange multipliers for the general linear constraints, and the

dual variables for the bounds, respectively, and where the vector inequalities hold componentwise.

In order to make the solution as efficient as possible, the variables and constraints are reordered internally by the

GALAHAD package GALAHAD QPP prior to solution. In particular, fixed variables and free (unbounded on both sides)

constraints are temporarily removed.

References:

The method is described in detail in

N. I. M. Gould and Ph. L. Toint (2001). “An iterative working-set method for large-scale non-convex quadratic

programming”. Applied Numerical Mathematics 43 (1–2) (2002) 109–128.

5 EXAMPLE OF USE

Suppose we wish to minimize 1
2 x2

1 + x2
2 +

3
2 x2

3 + 4x1x3 + 2x2 + 1 subject to the the general linear constraints 1 ≤
2x1 + x2 ≤ 2 and x2 + x3 = 2, and simple bounds −1 ≤ x1 ≤ 1 and x3 ≤ 2, Then, on writing the data for this problem

as

H =





1 4

2

4 3



 , g =





0

2

0



 , xl =





−1

−∞
−∞



 and xu =





1

∞
2



 ,

and

A =

(

2 1

1 1

)

, cl =

(

1

2

)

, and cu =

(

2

2

)

in sparse co-ordinate format, we may use the following code:

! THIS VERSION: GALAHAD 2.2 - 23/04/2008 AT 16:30 GMT.

PROGRAM GALAHAD_QPA_EXAMPLE

USE GALAHAD_QPA_double ! double precision version

IMPLICIT NONE

INTEGER, PARAMETER :: wp = KIND(1.0D+0) ! set precision

REAL (KIND = wp), PARAMETER :: infinity = 10.0_wp ** 20

TYPE (QPT_problem_type) :: p

TYPE (QPA_data_type) :: data

TYPE (QPA_control_type) :: control

TYPE (QPA_inform_type) :: inform

INTEGER, PARAMETER :: n = 3, m = 2, h_ne = 4, a_ne = 4

INTEGER :: s

INTEGER, ALLOCATABLE, DIMENSION(:) :: C_stat, B_stat

! start problem data

ALLOCATE(p%G(n), p%X_l(n), p%X_u(n))

ALLOCATE(p%C(m), p%C_l(m), p%C_u(m))

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD QPA (March 18, 2022) 19

QPA GALAHAD

ALLOCATE(p%X(n), p%Y(m), p%Z(n))

ALLOCATE(B_stat(n), C_stat(m))

p%new_problem_structure = .TRUE. ! new structure

p%n = n ; p%m = m ; p%f = 1.0_wp ! dimensions & objective constant

p%G = (/ 0.0_wp, 2.0_wp, 0.0_wp /) ! objective gradient

p%C_l = (/ 1.0_wp, 2.0_wp /) ! constraint lower bound

p%C_u = (/ 2.0_wp, 2.0_wp /) ! constraint upper bound

p%X_l = (/ - 1.0_wp, - infinity, - infinity /) ! variable lower bound

p%X_u = (/ 1.0_wp, infinity, 2.0_wp /) ! variable upper bound

p%rho_g = 1.0_wp ; p%rho_b = 1.0_wp ! initial penalty parameters

p%X = 0.0_wp ; p%Y = 0.0_wp ; p%Z = 0.0_wp ! start from zero

! sparse co-ordinate storage format

CALL SMT_put(p%H%type, ’COORDINATE’, s) ! Specify co-ordinate

CALL SMT_put(p%A%type, ’COORDINATE’, s) ! storage for H and A

ALLOCATE(p%H%val(h_ne), p%H%row(h_ne), p%H%col(h_ne))

ALLOCATE(p%A%val(a_ne), p%A%row(a_ne), p%A%col(a_ne))

p%H%val = (/ 1.0_wp, 2.0_wp, 3.0_wp, 4.0_wp /) ! Hessian H

p%H%row = (/ 1, 2, 3, 3 /) ! NB lower triangle

p%H%col = (/ 1, 2, 3, 1 /) ; p%H%ne = h_ne

p%A%val = (/ 2.0_wp, 1.0_wp, 1.0_wp, 1.0_wp /) ! Jacobian A

p%A%row = (/ 1, 1, 2, 2 /)

p%A%col = (/ 1, 2, 2, 3 /) ; p%A%ne = a_ne

! problem data complete

CALL QPA_initialize(data, control, inform) ! Initialize control parameters

control%infinity = infinity ! Set infinity

control%solve_qp = .TRUE.

! control%print_level = 1

! control%SLS_control%print_level = 1

CALL QPA_solve(p, C_stat, B_stat, data, control, inform) ! Solve problem

IF (inform%status == 0) THEN ! Successful return

WRITE(6, "(’ QPA: ’, I0, ’ iterations. Optimal objective value =’, &

& ES12.4, /, ’ Optimal solution = ’, (5ES12.4))") &

inform%iter, inform%obj, p%X

ELSE ! Error returns

WRITE(6, "(’ QPA_solve exit status = ’, I6) ") inform%status

END IF

CALL QPA_terminate(data, control, inform) ! delete internal workspace

END PROGRAM GALAHAD_QPA_EXAMPLE

This produces the following output:

QPA: 14 iterations. Optimal objective value = 5.4459E+00

Optimal solution = -5.4054E-02 1.1081E+00 8.9189E-01

The same problem may be solved holding the data in a sparse row-wise storage format by replacing the lines

! sparse co-ordinate storage format

...

! problem data complete

by

! sparse row-wise storage format

CALL SMT_put(p%H%type, ’SPARSE_BY_ROWS’, s) ! Specify sparse-by-row

CALL SMT_put(p%A%type, ’SPARSE_BY_ROWS’, s) ! storage for H and A

ALLOCATE(p%H%val(h_ne), p%H%col(h_ne), p%H%ptr(n + 1))

ALLOCATE(p%A%val(a_ne), p%A%col(a_ne), p%A%ptr(m + 1))

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

20 QPA (March 18, 2022) GALAHAD

GALAHAD QPA

p%H%val = (/ 1.0_wp, 2.0_wp, 3.0_wp, 4.0_wp /) ! Hessian H

p%H%col = (/ 1, 2, 3, 1 /) ! NB lower triangular

p%H%ptr = (/ 1, 2, 3, 5 /) ! Set row pointers

p%A%val = (/ 2.0_wp, 1.0_wp, 1.0_wp, 1.0_wp /) ! Jacobian A

p%A%col = (/ 1, 2, 2, 3 /)

p%A%ptr = (/ 1, 3, 5 /) ! Set row pointers

! problem data complete

or using a dense storage format with the replacement lines

! dense storage format

CALL SMT_put(p%H%type, ’DENSE’, s) ! Specify dense

CALL SMT_put(p%A%type, ’DENSE’, s) ! storage for H and A

ALLOCATE(p%H%val(n * (n + 1) / 2))

ALLOCATE(p%A%val(n * m))

p%H%val = (/ 1.0_wp, 0.0_wp, 2.0_wp, 4.0_wp, 0.0_wp, 3.0_wp /) ! Hessian

p%A%val = (/ 2.0_wp, 1.0_wp, 0.0_wp, 0.0_wp, 1.0_wp, 1.0_wp /) ! Jacobian

! problem data complete

respectively.

If instead H had been the diagonal matrix

H =





1

0

3





but the other data is as before, the diagonal storage scheme might be used for H, and in this case we would instead

CALL SMT_put(prob%H%type, ’DIAGONAL’, s) ! Specify dense storage for H

ALLOCATE(p%H%val(n))

p%H%val = (/ 1.0_wp, 0.0_wp, 3.0_wp /) ! Hessian values

Notice here that zero diagonal entries are stored.

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD QPA (March 18, 2022) 21

