
GALAHAD BQP

USER DOCUMENTATION GALAHAD Optimization Library version 4.0

1 SUMMARY

This package uses a preconditioned, projected-gradient method to solve the convex bound-constrained quadratic

programming problem

minimize q(x) = 1
2 xT Hx+ gTx+ f

subject to the simple bound constraints

xl
j ≤ x j ≤ xu

j , j = 1, . . . ,n,

where the n by n symmetric, positive-definite matrix H, the vectors g, xl , xu and the scalar f are given. Any of

the constraint bounds xl
j and xu

j may be infinite. Full advantage is taken of any zero coefficients in the matrix H;

the matrix need not be provided as there are options to obtain matrix-vector products involving H either by reverse

communication or from a user-provided subroutine.

ATTRIBUTES — Versions: GALAHAD BQP single, GALAHAD BQP double. Uses: GALAHAD CPU time, GALAHAD SY-

MBOLS, GALAHAD SPACE, GALAHAD SBLS, GALAHAD QPT, GALAHAD SPECFILE. Date: November 2009. Origin: N. I.

M. Gould, Rutherford Appleton Laboratory. Language: Fortran 95 + TR 15581 or Fortran 2003.

2 HOW TO USE THE PACKAGE

Access to the package requires a USE statement such as

Single precision version

USE GALAHAD BQP single

Double precision version

USE GALAHAD BQP double

If it is required to use both modules at the same time, the derived types SMT type, QPT problem type, NLPT userdata-

type, BQP time type, BQP control type, BQP inform type and BQP data type (Section 2.2) and the subroutines

BQP initialize, BQP solve, BQP terminate, (Section 2.3) and BQP read specfile (Section 2.7) must be renamed

on one of the USE statements.

2.1 Matrix storage formats

When it is explicitly available, the Hessian matrix H may be stored in a variety of input formats.

2.1.1 Dense storage format

Since H is symmetric, only the lower triangular part (that is the part hi j for 1 ≤ j ≤ i ≤ n) need be held. The lower-

triangular part of H is stored as a compact dense matrix by rows, that is, the values of the entries that occur before

or on the diagonal of each row in turn are stored in order within an appropriate real one-dimensional array. That is

component i∗ (i−1)/2+ j of the storage array H%val will hold the value hi j (and, by symmetry, h ji) for 1 ≤ j ≤ i ≤ n.

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD BQP (March 18, 2022) 1

BQP GALAHAD

2.1.2 Sparse co-ordinate storage format

Only the nonzero entries of the lower triangular part of H is stored. For the l-th entry of the lower triangular part of

H, its row index i, column index j and value hi j are stored in the l-th components of the integer arrays H%row, H%col

and real array H%val, respectively. The order is unimportant, but the total number of entries H%ne is also required.

2.1.3 Sparse row-wise storage format

Again only the nonzero nonzero entries of the lower triangular part of H is stored, but this time they are ordered so

that those that occur before or on the diagonal in row i appear directly before those in row i+ 1. For the i-th row of

H, the i-th component of a integer array H%ptr holds the position of the first entry in this row, while H%ptr (n+ 1)
holds the total number of entries plus one. The column indices j and values hi j of the entries occurring before or on

the diagonal in the i-th row are stored in components l = H%ptr(i), . . . ,H%ptr (i+ 1)− 1 of the integer array H%col,

and real array H%val, respectively.

For sparse matrices, this scheme almost always requires less storage than its predecessor.

2.1.4 Diagonal storage format

If H is diagonal (i.e., hi j = 0 for all 1 ≤ i 6= j ≤ n) only the diagonals entries hii, 1 ≤ i ≤ n, need be stored, and the first

n components of the array H%val may be used for the purpose.

2.2 The derived data types

Ten derived data types are accessible from the package.

2.2.1 The derived data type for holding matrices

The derived data type SMT TYPE is used to hold the matrix H. The components of SMT TYPE used here are:

n is a scalar component of type default INTEGER, that holds the number of columns in the matrix.

ne is a scalar variable of type default INTEGER, that holds the number of matrix entries.

type is a rank-one allocatable array of type default CHARACTER, that is used to indicate the matrix storage scheme

used. Its precise length and content depends on the type of matrix to be stored (see §2.2.2).

val is a rank-one allocatable array of type default REAL (double precision in GALAHAD BQP double) and dimension

at least ne, that holds the values of the entries. Each pair of off-diagonal entries hi j = h ji of a symmetric matrix

H is represented as a single entry (see §2.1.1–2.1.3). Any duplicated entries that appear in the sparse co-ordinate

or row-wise schemes will be summed.

row is a rank-one allocatable array of type default INTEGER, and dimension at least ne, that may hold the row indices

of the entries. (see §2.1.2).

col is a rank-one allocatable array of type default INTEGER, and dimension at least ne, that may the column indices

of the entries (see §2.1.2–2.1.3).

ptr is a rank-one allocatable array of type default INTEGER, and dimension at least m + 1, that may hold the pointers

to the first entry in each row (see §2.1.3).

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

2 BQP (March 18, 2022) GALAHAD

GALAHAD BQP

2.2.2 The derived data type for holding the problem

The derived data type QPT problem type is used to hold the problem. The components of QPT problem type are:

n is a scalar variable of type default INTEGER, that holds the number of optimization variables, n.

H is scalar variable of type SMT TYPE that holds the Hessian matrix H. The following components are used:

H%type is an allocatable array of rank one and type default CHARACTER, that is used to indicate the storage

scheme used. If the dense storage scheme (see Section 2.1.1) is used, the first five components of H%type

must contain the string DENSE. For the sparse co-ordinate scheme (see Section 2.1.2), the first ten com-

ponents of H%type must contain the string COORDINATE, for the sparse row-wise storage scheme (see

Section 2.1.3), the first fourteen components of H%type must contain the string SPARSE BY ROWS, and for

the diagonal storage scheme (see Section 2.1.4), the first eight components of H%type must contain the

string DIAGONAL.

For convenience, the procedure SMT put may be used to allocate sufficient space and insert the required

keyword into H%type. For example, if prob is of derived type BQP problem type and involves a Hessian

we wish to store using the co-ordinate scheme, we may simply

CALL SMT_put(prob%H%type, ’COORDINATE’, istat)

See the documentation for the GALAHAD package SMT for further details on the use of SMT put.

H%ne is a scalar variable of type default INTEGER, that holds the number of entries in the lower triangular part

of H in the sparse co-ordinate storage scheme (see Section 2.1.2). It need not be set for any of the other

three schemes.

H%val is a rank-one allocatable array of type default REAL (double precision in GALAHAD BQP double), that

holds the values of the entries of the lower triangular part of the Hessian matrix H in any of the storage

schemes discussed in Section 2.1.

H%row is a rank-one allocatable array of type default INTEGER, that holds the row indices of the lower triangu-

lar part of H in the sparse co-ordinate storage scheme (see Section 2.1.2). It need not be allocated for any

of the other three schemes.

H%col is a rank-one allocatable array variable of type default INTEGER, that holds the column indices of the

lower triangular part of H in either the sparse co-ordinate (see Section 2.1.2), or the sparse row-wise (see

Section 2.1.3) storage scheme. It need not be allocated when the dense or diagonal storage schemes are

used.

H%ptr is a rank-one allocatable array of dimension n+1 and type default INTEGER, that holds the starting posi-

tion of each row of the lower triangular part of H, as well as the total number of entries plus one, in the

sparse row-wise storage scheme (see Section 2.1.3). It need not be allocated when the other schemes are

used.

G is a rank-one allocatable array of dimension n and type default REAL (double precision in GALAHAD BQP double),

that holds the gradient g of the linear term of the quadratic objective function. The j-th component of G,

j = 1, . . . ,n, contains g j.

f is a scalar variable of type default REAL (double precision in GALAHAD BQP double), that holds the constant

term, f , in the objective function.

X l is a rank-one allocatable array of dimension n and type default REAL (double precision in GALAHAD BQP double),

that holds the vector of lower bounds xl on the the variables. The j-th component of X l, j = 1, . . . ,n, contains

xl
j. Infinite bounds are allowed by setting the corresponding components of X l to any value smaller than

-infinity, where infinity is a component of the control array control (see Section 2.2.3).

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD BQP (March 18, 2022) 3

BQP GALAHAD

X u is a rank-one allocatable array of dimension n and type default REAL (double precision in GALAHAD BQP double),

that holds the vector of upper bounds xu on the variables. The j-th component of X u, j = 1, . . . ,n, contains

xu
j . Infinite bounds are allowed by setting the corresponding components of X u to any value larger than that

infinity, where infinity is a component of the control array control (see Section 2.2.3).

X is a rank-one allocatable array of dimension n and type default REAL (double precision in GALAHAD BQP double),

that holds the values x of the optimization variables. The j-th component of X, j = 1, . . . ,n, contains x j.

Z is a rank-one allocatable array of dimension n and type default REAL (double precision in GALAHAD BQP double),

that holds the values z of estimates of the dual variables corresponding to the simple bound constraints (see

Section 4). The j-th component of Z, j = 1, . . . ,n, contains z j.

2.2.3 The derived data type for holding control parameters

The derived data type BQP control type is used to hold controlling data. Default values may be obtained by calling

BQP initialize (see Section 2.3.1), while components may also be changed by calling BQP read specfile (see

Section 2.7.1). The components of BQP control type are:

error is a scalar variable of type default INTEGER, that holds the stream number for error messages. Printing of error

messages in BQP solve and BQP terminate is suppressed if error ≤ 0. The default is error = 6.

out is a scalar variable of type default INTEGER, that holds the stream number for informational messages. Printing

of informational messages in BQP solve is suppressed if out < 0. The default is out = 6.

print level is a scalar variable of type default INTEGER, that is used to control the amount of informational output

which is required. No informational output will occur if print level ≤ 0. If print level = 1, a single line

of output will be produced for each iteration of the process. If print level ≥ 2, this output will be increased

to provide significant detail of each iteration. The default is print level = 0.

start print is a scalar variable of type default INTEGER, that specifies the first iteration for which printing will be

permitted in GALAHAD BQP solve. If start print is negative, printing will be permitted from the outset. The

default is start print = -1.

stop print is a scalar variable of type default INTEGER, that specifies the last iteration for which printing will be

permitted in GALAHAD BQP solve. If stop print is negative, printing will be permitted once it has been started

by start print. The default is stop print = -1.

print gap is a scalar variable of type default INTEGER. Once printing has been started, output will occur once every

print gap iterations. If print gap is no larger than 1, printing will be permitted on every iteration. The default

is print gap = 1.

maxit is a scalar variable of type default INTEGER, that holds the maximum number of iterations which will be

allowed in GALAHAD BQP solve. The default is maxit = 1000.

cold start is a scalar variable of type default INTEGER, that should be set to 0 if a warm start is required (with

variables assigned according to B stat, see below), and to any other value if the values given in prob%X suffice.

The default is cold start = 1.

ratio cg vs sd is a scalar variable of type default INTEGER, that specifies the ratio of how many iterations use CG

rather steepest descent will be attempted. The default is ratio cg vs sd = 1.

change max is a scalar variable of type default INTEGER, that specifies the maximum number of per-iteration changes

in the working set permitted when allowing subspace solution rather than steepest descent (see §4). The default

is change max = 2.

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

4 BQP (March 18, 2022) GALAHAD

GALAHAD BQP

cg maxit is a scalar variable of type default INTEGER, that holds the maximum number of conjugate-gradient itera-

tions which will be allowed per main iteration in GALAHAD BQP solve. The default is cg maxit = 1000.

infinity is a scalar variable of type default REAL (double precision in GALAHAD BQP double), that is used to specify

which constraint bounds are infinite. Any bound larger than infinity in modulus will be regarded as infinite.

The default is infinity = 1019.

stop p is a scalar variable of type default REAL (double precision in GALAHAD BQP double), that holds the required

accuracy for the primal infeasibility (see Section 4). The default is stop p = u1/3, where u is EPSILON(1.0)

(EPSILON(1.0D0) in GALAHAD BQP double).

stop d is a scalar variable of type default REAL (double precision in GALAHAD BQP double), that holds the required

accuracy for the dual infeasibility (see Section 4). The default is stop d = u1/3, where u is EPSILON(1.0)

(EPSILON(1.0D0) in GALAHAD BQP double).

stop c is a scalar variable of type default REAL (double precision in GALAHAD BQP double), that holds the required

accuracy for the violation of complementarity slackness (see Section 4). The default is stop c = u1/3, where u

is EPSILON(1.0) (EPSILON(1.0D0) in GALAHAD BQP double).

identical bounds tol is a scalar variable of type default REAL (double precision in GALAHAD BQP double). Each

pair of variable bounds (xl
j,x

u
j) that is closer than identical bounds tol will be reset to the average of their

values, 1
2 (x

l
j + xu

j). The default is identical bounds tol = u, where u is EPSILON(1.0) (EPSILON(1.0D0)

in GALAHAD BQP double).

stop cg relative and stop cg absolute are scalar variables of type default REAL (double precision in GA-

LAHAD BQP double), that hold the relative and absolute convergence tolerances for the conjugate-gradient

iteration that occurs in the face of currently-active constraints when constructing the search direction.

stop cg relative = 0.01 and stop cg absolute =
√

u, where u is EPSILON(1.0) (EPSILON(1.0D0) in

GALAHAD BQP double).

zero curvature is a scalar variable of type default REAL (double precision in GALAHAD BQP double)that specifies

the threshold below which any objective-function curvature encountered is regarded as zero. The default is

zero curvature = 10u, where u is EPSILON(1.0) (EPSILON(1.0D0) in GALAHAD BQP double).

cpu time limit is a scalar variable of type default REAL (double precision in GALAHAD BQP double), that is used to

specify the maximum permitted CPU time. Any negative value indicates no limit will be imposed. The default

is cpu time limit = - 1.0.

exact arcsearch is a scalar variable of type default LOGICAL, that should be set .TRUE. if the exact generalized

Cauchy point, the first estimate of the minimizer of the objective in the Cauchy direction within the feasible

box, is required, and .FALSE. if an approximation suffices. The default is exact arcsearch = .TRUE..

space critical is a scalar variable of type default LOGICAL, that must be set .TRUE. if space is critical when

allocating arrays and .FALSE. otherwise. The package may run faster if space critical is .FALSE. but at the

possible expense of a larger storage requirement. The default is space critical = .FALSE..

deallocate error fatal is a scalar variable of type default LOGICAL, that must be set .TRUE. if the user wishes to

terminate execution if a deallocation fails, and .FALSE. if an attempt to continue will be made. The default is

deallocate error fatal = .FALSE..

prefix is a scalar variable of type default CHARACTER and length 30, that may be used to provide a user-selected

character string to preface every line of printed output. Specifically, each line of output will be prefaced by the

string prefix(2:LEN(TRIM(prefix))-1), thus ignoring the first and last non-null components of the supplied

string. If the user does not want to preface lines by such a string, they may use the default prefix = "".

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD BQP (March 18, 2022) 5

BQP GALAHAD

SBLS control is a scalar variable of type SBLS control type whose components are used to control the factoriza-

tion and/or preconditioner used, performed by the package GALAHAD SBLS. See the documentation for GALAH-

AD SBLS for further details.

2.2.4 The derived data type for holding timing information

The derived data type BQP time type is used to hold elapsed CPU times for the various parts of the calculation. The

components of BQP time type are:

total is a scalar variable of type default REAL, that gives the total time spent in the package.

analyse is a scalar variable of type default REAL, that gives the time spent analysing the required matrices prior to

factorization.

factorize is a scalar variable of type default REAL, that gives the time spent factorizing the required matrices.

solve is a scalar variable of type default REAL, that gives the time spent computing the search direction.

2.2.5 The derived data type for holding informational parameters

The derived data type BQP inform type is used to hold parameters that give information about the progress and needs

of the algorithm. The components of BQP inform type are:

status is a scalar variable of type default INTEGER, that gives the exit status of the algorithm. See Section 2.6 for

details.

alloc status is a scalar variable of type default INTEGER, that gives the status of the last attempted array allocation

or deallocation. This will be 0 if status = 0.

bad alloc is a scalar variable of type default CHARACTER and length 80, that gives the name of the last internal array

for which there were allocation or deallocation errors. This will be the null string if status = 0.

factorization status is a scalar variable of type default INTEGER, that gives the return status from the matrix

factorization.

iter is a scalar variable of type default INTEGER, that gives the number of iterations performed.

obj is a scalar variable of type default REAL (double precision in GALAHAD BQP double), that holds the value of the

objective function at the best estimate of the solution found.

time is a scalar variable of type BQP time type whose components are used to hold elapsed CPU times for the

various parts of the calculation (see Section 2.2.4).

SBLS inform is a scalar variable of type SBLS inform type whose components provide information about the progress

and needs of the factorization/preconditioner performed by the package GALAHAD SBLS. See the documentation

for GALAHAD SBLS for further details.

2.2.6 The derived data type for holding problem data

The derived data type BQP data type is used to hold all the data for a particular problem, or sequences of problems

with the same structure, between calls of BQP procedures. This data should be preserved, untouched, from the initial

call to BQP initialize to the final call to BQP terminate.

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

6 BQP (March 18, 2022) GALAHAD

GALAHAD BQP

2.2.7 The derived data type for holding user data

The derived data type NLPT userdata type is available to allow the user to pass data to and from user-supplied matrix-

vector product and preconditioning subroutines (see Section 2.4). Components of variables of type NLPT userdata-

type may be allocated as necessary. The following components are available:

integer is a rank-one allocatable array of type default INTEGER.

real is a rank-one allocatable array of type default REAL (double precision in GALAHAD BQP double)

complex is a rank-one allocatable array of type default COMPLEX (double precision complex in GALAHAD BQP double).

character is a rank-one allocatable array of type default CHARACTER.

logical is a rank-one allocatable array of type default LOGICAL.

integer pointer is a rank-one pointer array of type default INTEGER.

real pointer is a rank-one pointer array of type default REAL (double precision in GALAHAD BQP double)

complex pointer is a rank-one pointer array of type default COMPLEX (double precision complex in GALAHAD BQP -

double).

character pointer is a rank-one pointer array of type default CHARACTER.

logical pointer is a rank-one pointer array of type default LOGICAL.

2.2.8 The derived data type for holding reverse-communication data

The derived data type BQP reverse type is used to hold data needed for reverse communication when this is required.

The components of BQP reverse type are:

nz v start is a scalar variable of type default INTEGER, that may be used to hold the starting position in NZ v (see

below) of the list of indices of nonzero components of v.

nz v end is a scalar variable of type default INTEGER, that may be used to hold the finishing position in NZ v (see

below) of the list of indices of nonzero components of v.

NZ v is a rank-one allocatable array of dimension n and type default INTEGER, that may be used to hold the indices

of the nonzero components of v. If used, components NZ v(nz v start:nz v end) of V (see below) will be

nonzero.

V is a rank-one allocatable array of dimension n and type default REAL (double precision in GALAHAD BQP double),

that is used to hold the components of the output vector v.

PROD is a rank-one allocatable array of dimension n and type default REAL (double precision in GALAHAD BQP double),

that is used to record the components of the resulting vector Hv.

nz prod end is a scalar variable of type default INTEGER, that is used to record the finishing position in NZ prod (see

below) of the list of indices of nonzero components of Hv if required.

NZ prod is a rank-one allocatable array of dimension n and type default INTEGER, that is used to record the list of

indices of nonzero components of Hv if required. Components NZ prod(1:nz prod end) of PROD should then

be nonzero.

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD BQP (March 18, 2022) 7

BQP GALAHAD

2.3 Argument lists and calling sequences

There are three procedures for user calls (see Section 2.7 for further features):

1. The subroutine BQP initialize is used to set default values, and initialize private data, before solving one or

more problems with the same sparsity and bound structure.

2. The subroutine BQP solve is called to solve the problem.

3. The subroutine BQP terminate is provided to allow the user to automatically deallocate array components of

the private data, allocated by BQP solve, at the end of the solution process.

We use square brackets [] to indicate OPTIONAL arguments.

2.3.1 The initialization subroutine

Default values are provided as follows:

CALL BQP initialize(data, control)

data is a scalar INTENT(INOUT) argument of type BQP data type (see Section 2.2.6). It is used to hold data about

the problem being solved.

control is a scalar INTENT(OUT) argument of type BQP control type (see Section 2.2.3). On exit, control con-

tains default values for the components as described in Section 2.2.3. These values should only be changed after

calling BQP initialize.

2.3.2 The quadratic programming subroutine

The quadratic programming solution algorithm is called as follows:

CALL BQP solve(prob, B stat, data, control, inform, userdata[, reverse, eval HPROD])

prob is a scalar INTENT(INOUT) argument of type QPT problem type (see Section 2.2.2). It is used to hold data about

the problem being solved. The user must allocate all the array components, and set values for all components,

except perhaps prob%H; if the effect of H is only available to form products via reverse communication (see

reverse below) or with a user-supplied subroutine (see eval HPROD below) prob%H and it is not needed, but

otherwise prob%H should be set using whichever of the matrix formats described in Section 2.1 is appropriate

for H for the user’s application.

The components prob%X and prob%Z must be set to initial estimates of the primal variables, x and dual

variables for the bound constraints, z, respectively. Inappropriate initial values will be altered, so the user

should not be overly concerned if suitable values are not apparent, and may be content with merely setting

prob%X=0.0 and prob%Z=0.0.

On exit, the components prob%X and prob%Z will contain the best estimates of the primal variables x, and dual

variables for the bound constraints z, respectively. Restrictions: prob%n > 0 and (if H is provided) prob%H%ne

≥−2. prob%H type ∈ {’DENSE’, ’COORDINATE’, ’SPARSE BY ROWS’, ’DIAGONAL’ }.

B stat is a rank-one INTENT(INOUT) array argument of dimension prob%n and type default INTEGER, that indicates

which of the simple bound constraints are in the current working set. Possible values for B stat(j), j= 1, . . . ,
prob%n, and their meanings are

<0 the j-th simple bound constraint is in the working set, on its lower bound,

>0 the j-th simple bound constraint is in the working set, on its upper bound, and

0 the j-th simple bound constraint is not in the working set.

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

8 BQP (March 18, 2022) GALAHAD

GALAHAD BQP

Suitable values must be supplied if control%bqp control%cold start = 0 on entry, but need not be provided

for other input values of control%cold start. Inappropriate values will be ignored. On exit, B stat will

contain values appropriate for the ultimate working set.

data is a scalar INTENT(INOUT) argument of type BQP data type (see Section 2.2.6). It is used to hold data about

the problem being solved. It must not have been altered by the user since the last call to BQP initialize.

control is a scalar INTENT(IN) argument of type BQP control type (see Section 2.2.3). Default values may be

assigned by calling BQP initialize prior to the first call to BQP solve.

inform is a scalar INTENT(INOUT) argument of type BQP inform type (see Section 2.2.5). On initial entry, the

component status must be set to 1, while other components need not be set. A successful call to BQP solve is

indicated when the component status has the value 0. For other return values of status, see Sections 2.5 and

2.6.

userdata is a scalar INTENT(INOUT) argument of type NLPT userdata type whose components may be used to

communicate user-supplied data (see Section 2.2.7) to and from the OPTIONAL subroutine eval HPROD (see

below).

reverse is an OPTIONAL scalar INTENT(INOUT) argument of type BQP reverse type (see Section 2.2.8). It is used to

communicate reverse-communication data between the subroutine and calling program. If reverse is PRESENT

and eval%HPROD (see below) is absent, the user should monitor inform%status on exit (see Section 2.5).

eval HPROD is an OPTIONAL user-supplied subroutine whose purpose is to evaluate the value of the product Hv of the

Hessian of the objective function with a given vector v. See Section 2.4.1 for details. If eval HPROD is present,

it must be declared EXTERNAL in the calling program. If eval HPROD is absent, GALAHAD BQP solve will use

reverse communication (see Section 2.5) to obtain Hessian-vector products if reverse is PRESENT or otherwise

require that the user has provided all relevant components of prob%H.

2.3.3 The termination subroutine

All previously allocated arrays are deallocated as follows:

CALL BQP terminate(data, control, inform)

data is a scalar INTENT(INOUT) argument of type BQP data type exactly as for BQP solve, which must not have

been altered by the user since the last call to BQP initialize. On exit, array components will have been

deallocated.

control is a scalar INTENT(IN) argument of type BQP control type exactly as for BQP solve.

inform is a scalar INTENT(OUT) argument of type BQP inform type exactly as for BQP solve. Only the component

status will be set on exit, and a successful call to BQP terminate is indicated when this component status

has the value 0. For other return values of status, see Section 2.6.

2.4 Matrix-vector operations

2.4.1 Hessian-vector products via internal evaluation

If the argument eval HPROD is present when calling GALAHAD BQP solve, the user is expected to provide a subroutine

of that name to evaluate the product of the Hessian of the objective function H with a given vector v. The routine must

be specified as

SUBROUTINE eval_HPROD(status, userdata, V, PROD[, NZ_v, nz_v_start, nz_v_end, &
NZ_prod, nz_prod_end])

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD BQP (March 18, 2022) 9

BQP GALAHAD

whose arguments are as follows:

status is a scalar INTENT(OUT) argument of type default INTEGER, that should be set to 0 if the routine has been

able to evaluate the product Hv and to a non-zero value if the evaluation has not been possible.

userdata is a scalar INTENT(INOUT) argument of type NLPT userdata type whose components may be used to

communicate user-supplied data to and from the subroutine (see Section 2.2.7).

V is a rank-one INTENT(IN) array argument of type default REAL (double precision in GALAHAD BQP double)

whose components contain the vector v. If components nz v start, nz v end and NZ v (see below) are

PRESENT, only components NZ v(nz v start:nz v end) of V will be nonzero and the remaining components

of V should be ignored. Otherwise, all components of V should be presumed to be nonzero.

PROD is a rank-one INTENT(OUT) array argument of type default REAL (double precision in GALAHAD BQP double)

whose components on output contain the required components of Hv. If components nz prod end and NZ prod

(see below) are PRESENT, only the nonzero components NZ prod(1:nz prod end) of PROD need be assigned.

Otherwise, all components of PROD must be set.

nz v start is an OPTIONAL scalar variable of type default INTEGER, that, if PRESENT, holds the starting position in

NZ v of the list of indices of nonzero components of v.

nz v end is an OPTIONAL scalar variable of type default INTEGER, that, if PRESENT, holds the finishing position in

NZ v of the list of indices of nonzero components of v.

NZ v is an OPTIONAL rank-one allocatable array of dimension n and type default INTEGERthat, if PRESENT, holds the

indices of the nonzero components of v. If any of nz v start, nz v end and NZ v are absent, all components

of V are assumed to be nonzero.

nz prod end is an OPTIONAL scalar variable of type default INTEGER, that, if PRESENT, must be set to record the

number of non-zeros in Hv.

NZ prod is an OPTIONAL rank-one allocatable array of dimension n and type default INTEGERthat, if PRESENT, must

be set to record the list of indices of nonzero components of Hv. If either of nz prod end and NZ prod are

absent, all components of PROD should be set even if they are zero.

2.5 Reverse Communication Information

A positive value of inform%status on exit from BQP solve indicates that GALAHAD BQP solve is seeking further

information—this will happen if the user has chosen to evaluate matrix-vector products by reverse communication.

The user should compute the required information and re-enter GALAHAD BQP solve with inform%status and all

other arguments (except those specifically mentioned below) unchanged.

Possible values of inform%status and the information required are

2. The user should compute the matrix-vector product Hv using the vector v whose components are stored in

reverse%V and store the required product in reverse%PROD.

3. The user should compute the matrix-vector product Hv using the vector v whose nonzero components are

stored in positions reverse%NZ v(reverse%nz v start:reverse%nz v end) of reverse%V. The remaining

components of reverse%V should be ignored.

4. The user should compute the nonzero components of the matrix-vector product Hv using the vector v whose

nonzero components are stored in positions reverse%NZ v(reverse%nz v start:reverse%nz v end) of

reverse%V. The remaining components of reverse%V should be ignored. The nonzero components must oc-

cupy positions reverse%NZ prod(1:reverse%nz prod end) of reverse%PROD, and the components

reverse%NZ prod and reverse%nz prod end must be set. This return can only happen if control%exact arcsearch

is .TRUE..

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

10 BQP (March 18, 2022) GALAHAD

GALAHAD BQP

2.6 Warning and error messages

A negative value of inform%status on exit from BQP solve or BQP terminate indicates that an error has occurred.

No further calls should be made until the error has been corrected. Possible values are:

-1. An allocation error occurred. A message indicating the offending array is written on unit control%error, and the

returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc respectively.

-2. A deallocation error occurred. A message indicating the offending array is written on unit control%error and

the returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc respectively.

-3. One of the restrictions prob%n > 0 or the requirement that prob%H type contain its relevant string ’DENSE’,

’COORDINATE’, ’SPARSE BY ROWS’ or ’DIAGONAL’ when H is available, has been violated.

-4. The bound constraints are inconsistent.

-9. The analysis phase of the factorization failed; the return status from the factorization package is given in the

component inform%factor status.

-10. The factorization failed; the return status from the factorization package is given in the component inform%fac-

tor status.

-16. The problem is so ill-conditioned that further progress is impossible.

-17. The step is too small to make further impact.

-18. Too many iterations have been performed. This may happen if control%maxit is too small, but may also be

symptomatic of a badly scaled problem.

-19. The CPU time limit has been reached. This may happen if control%cpu time limit is too small, but may

also be symptomatic of a badly scaled problem.

-20. The Hessian matrix H of the objective function appears to be indefinite.

-23. An entry from the strict upper triangle of H has been specified.

2.7 Further features

In this section, we describe an alternative means of setting control parameters, that is components of the variable

control of type BQP control type (see Section 2.2.3), by reading an appropriate data specification file using the

subroutine BQP read specfile. This facility is useful as it allows a user to change BQP control parameters without

editing and recompiling programs that call BQP.

A specification file, or specfile, is a data file containing a number of ”specification commands”. Each command

occurs on a separate line, and comprises a ”keyword”, which is a string (in a close-to-natural language) used to identify

a control parameter, and an (optional) ”value”, which defines the value to be assigned to the given control parameter.

All keywords and values are case insensitive, keywords may be preceded by one or more blanks but values must not

contain blanks, and each value must be separated from its keyword by at least one blank. Values must not contain more

than 30 characters, and each line of the specfile is limited to 80 characters, including the blanks separating keyword

and value.

The portion of the specification file used by BQP read specfile must start with a ”BEGIN BQP” command and

end with an ”END” command. The syntax of the specfile is thus defined as follows:

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD BQP (March 18, 2022) 11

BQP GALAHAD

(.. lines ignored by BQP_read_specfile ..)

BEGIN BQP

keyword value

.......

keyword value

END

(.. lines ignored by BQP_read_specfile ..)

where keyword and value are two strings separated by (at least) one blank. The “BEGIN BQP” and “END” delimiter

command lines may contain additional (trailing) strings so long as such strings are separated by one or more blanks,

so that lines such as

BEGIN BQP SPECIFICATION

and

END BQP SPECIFICATION

are acceptable. Furthermore, between the “BEGIN BQP” and “END” delimiters, specification commands may occur in

any order. Blank lines and lines whose first non-blank character is ! or * are ignored. The content of a line after a !

or * character is also ignored (as is the ! or * character itself). This provides an easy manner to ”comment out” some

specification commands, or to comment specific values of certain control parameters.

The value of a control parameters may be of three different types, namely integer, logical or real. Integer and real

values may be expressed in any relevant Fortran integer and floating-point formats (respectively). Permitted values for

logical parameters are ”ON”, ”TRUE”, ”.TRUE.”, ”T”, ”YES”, ”Y”, or ”OFF”, ”NO”, ”N”, ”FALSE”, ”.FALSE.” and ”F”.

Empty values are also allowed for logical control parameters, and are interpreted as ”TRUE”.

The specification file must be open for input when BQP read specfile is called, and the associated device number

passed to the routine in device (see below). Note that the corresponding file is REWINDed, which makes it possible

to combine the specifications for more than one program/routine. For the same reason, the file is not closed by

BQP read specfile.

2.7.1 To read control parameters from a specification file

Control parameters may be read from a file as follows:

CALL BQP_read_specfile(control, device)

control is a scalar INTENT(INOUT)argument of type BQP control type (see Section 2.2.3). Default values should

have already been set, perhaps by calling BQP initialize. On exit, individual components of control may

have been changed according to the commands found in the specfile. Specfile commands and the component

(see Section 2.2.3) of control that each affects are given in Table 2.1.

device is a scalar INTENT(IN)argument of type default INTEGER, that must be set to the unit number on which the

specfile has been opened. If device is not open, control will not be altered and execution will continue, but

an error message will be printed on unit control%error.

2.8 Information printed

If control%print level is positive, information about the progress of the algorithm will be printed on unit control-

%out. If control%print level = 1, a single line of output will be produced for each iteration of the process. For

the initial-feasible-point phase, this will include values of the current primal and dual infeasibility, and violation

of complementary slackness, the feasibility-phase objective value, the current steplength, the value of the barrier

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

12 BQP (March 18, 2022) GALAHAD

GALAHAD BQP

command component of control value type

error-printout-device %error integer

printout-device %out integer

print-level %print level integer

start-print %start print integer

stop-print %stop print integer

iterations-between-printing %print gap integer

maximum-number-of-iterations %maxit integer

cold-start %cold start integer

ratio-of-cg-iterations-to-steepest-descent %ratio cg vs sd integer

max-change-to-working-set-for-subspace-solution %change max integer

maximum-number-of-cg-iterations-per-iteration %cg maxit integer

infinity-value %infinity real

primal-accuracy-required %stop p real

dual-accuracy-required %stop d real

complementary-slackness-accuracy-required %stop c real

identical-bounds-tolerance %identical bounds tol real

cg-relative-accuracy-required %stop cg relative real

cg-absolute-accuracy-required %stop cg absolute real

zero-curvature-threshold %zero curvature real

maximum-cpu-time-limit %cpu time limit real

exact-arcsearch-used %exact arcsearch logical

space-critical %space critical logical

deallocate-error-fatal %deallocate error fatal logical

output-line-prefix %prefix character

Table 2.1: Specfile commands and associated components of control.

parameter, the number of backtracks in the linesearch and the elapsed CPU time in seconds. Once a suitable feasible

point has been found, the iteration is divided into major iterations, at which the barrier parameter is reduced, and minor

iterations, and which the barrier function is approximately minimized for the current value of the barrier parameter.

For the major iterations, the value of the barrier parameter, the required values of dual feasibility and violation of

complementary slackness, and the current constraint infeasibility are reported. Each minor iteration of the optimality

phase results in a line giving the current dual feasibility and violation of complementary slackness, the objective

function value, the ratio of predicted to achieved reduction of the objective function, the trust-region radius, the

number of backtracks in the linesearch, the number of conjugate-gradient iterations taken, and the elapsed CPU time

in seconds.

If control%print level ≥ 2 this output will be increased to provide significant detail of each iteration. This

extra output includes residuals of the linear systems solved, and, for larger values of control%print level, values

of the primal and dual variables and Lagrange multipliers.

3 GENERAL INFORMATION

Use of common: None.

Workspace: Provided automatically by the module.

Other routines called directly: None.

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD BQP (March 18, 2022) 13

BQP GALAHAD

Other modules used directly: BQP solve calls the GALAHAD packages GALAHAD CPU time, GALAHAD SYMBOLS,

GALAHAD SPACE, GALAHAD SBLS, GALAHAD QPT and GALAHAD SPECFILE.

Input/output: Output is under control of the arguments control%error, control%out and control%print level.

Restrictions: prob%n > 0, prob%H type ∈ {’DENSE’, ’COORDINATE’, ’SPARSE BY ROWS’, ’DIAGONAL’ } (if H is

explicit).

Portability: ISO Fortran 95 + TR 15581 or Fortran 2003. The package is thread-safe.

4 METHOD

The required solution x necessarily satisfies the primal optimality conditions

xl ≤ x ≤ xu, (4.1)

the dual optimality conditions

Hx+ g = z and z = zl + zu, (4.2)

and

zl ≥ 0 and zu ≤ 0, (4.3)

and the complementary slackness conditions

(x− xl)T zl = 0 and (x− xu)T zu = 0, (4.4)

where the components of the vector z are known as the dual variables for the bounds, and where the vector inequalities

hold componentwise. Projected-gradient methods iterate towards a point that satisfies these conditions by ultimately

aiming to satisfy (4.2), while ensuring that (4.1), and (4.3) and (4.4) are satisfied at each stage. Appropriate norms of

the amounts by which (4.1), (4.2) and (4.4) fail to be satisfied are known as the primal and dual infeasibility, and the

violation of complementary slackness, respectively.

The method is iterative. Each iteration proceeds in two stages. Firstly, the so-called generalized Cauchy point

for the quadratic objective is found. (The purpose of this point is to ensure that the algorithm converges and that the

set of bounds which are satisfied as equations at the solution is rapidly identified.) Thereafter an improvement to the

objective is sought using either a direct-matrix or truncated conjugate-gradient algorithm.

References:

This is a specialised version of the method presented in

A. R. Conn, N. I. M. Gould and Ph. L. Toint (1988). Global convergence of a class of trust region algorithms for

optimization with simple bounds. SIAM Journal on Numerical Analysis 25 433-460,

5 EXAMPLE OF USE

Suppose we wish to minimize 1
2 x2

1 + x2
2 + x1x2 + 3

2 x2
3 + 2x2 + 1 subject to the simple bounds −1 ≤ x1 ≤ 1 and x3 ≤ 2.

Then, on writing the data for this problem as

H =

1 1

1 2

3

 , g =

0

2

0

 , xl =

−1

−∞

−∞

 and xu =

1

∞

2

in sparse co-ordinate format, we may use the following code:

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

14 BQP (March 18, 2022) GALAHAD

GALAHAD BQP

! THIS VERSION: GALAHAD 3.3 - 03/06/2021 AT 08:15 GMT.

PROGRAM GALAHAD_BQP_EXAMPLE

USE GALAHAD_BQP_double ! double precision version

IMPLICIT NONE

INTEGER, PARAMETER :: wp = KIND(1.0D+0) ! set precision

REAL (KIND = wp), PARAMETER :: infinity = 10.0_wp ** 20

TYPE (QPT_problem_type) :: p

TYPE (BQP_reverse_type) :: reverse

TYPE (BQP_data_type) :: data

TYPE (BQP_control_type) :: control

TYPE (BQP_inform_type) :: inform

TYPE (GALAHAD_userdata_type) :: userdata

INTEGER :: s

REAL (KIND = wp) :: t1, t2

INTEGER, PARAMETER :: n = 3, h_ne = 4

INTEGER, ALLOCATABLE, DIMENSION(:) :: B_stat

! start problem data

ALLOCATE(p%G(n), p%X_l(n), p%X_u(n))

ALLOCATE(p%X(n), p%Z(n))

ALLOCATE(B_stat(n))

p%new_problem_structure = .TRUE. ! new structure

p%n = n ; p%f = 1.0_wp ! dimensions & objective constant

p%G = (/ 0.0_wp, 2.0_wp, 1.0_wp /) ! objective gradient

p%X_l = (/ - 1.0_wp, - infinity, 0.0_wp /) ! variable lower bound

p%X_u = (/ infinity, 1.0_wp, 2.0_wp /) ! variable upper bound

p%X = 0.0_wp ; p%Z = 0.0_wp ! start from zero

! sparse co-ordinate storage format

CALL SMT_put(p%H%type, ’COORDINATE’, s) ! Co-ordinate storage for H

ALLOCATE(p%H%val(h_ne), p%H%row(h_ne), p%H%col(h_ne))

p%H%val = (/ 1.0_wp, 2.0_wp, 1.0_wp, 3.0_wp /) ! Hessian H

p%H%row = (/ 1, 2, 2, 3 /) ! NB lower triangle

p%H%col = (/ 1, 2, 1, 3 /) ; p%H%ne = h_ne

! problem data complete

CALL BQP_initialize(data, control, inform) ! Initialize control parameters

control%infinity = infinity ! Set infinity

! control%print_level = 1 ! print one line/iteration

inform%status = 1

CALL BQP_solve(p, B_stat, data, control, inform, userdata)

IF (inform%status == 0) THEN ! Successful return

WRITE(6, "(’ BQP: ’, I0, ’ iterations ’, /, &

& ’ Optimal objective value =’, &

& ES12.4, /, ’ Optimal solution = ’, (5ES12.4))") &

inform%iter, inform%obj, p%X

ELSE ! Error returns

WRITE(6, "(’ BQP_solve exit status = ’, I0) ") inform%status

WRITE(6, *) inform%alloc_status, inform%bad_alloc

END IF

CALL BQP_terminate(data, control, inform) ! delete workspace

DEALLOCATE(p%G, p%X, p%X_l, p%X_u, p%Z, B_stat)

DEALLOCATE(p%H%val, p%H%row, p%H%col, p%H%type)

END PROGRAM GALAHAD_BQP_EXAMPLE

This produces the following output:

BQP: 2 iterations

Optimal objective value = -1.0000E+00

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD BQP (March 18, 2022) 15

BQP GALAHAD

Optimal solution = 2.0000E+00 -2.0000E+00 0.0000E+00

The same problem may be solved holding the data in a sparse row-wise storage format by replacing the lines

! sparse co-ordinate storage format

...

! problem data complete

by

! sparse row-wise storage format

CALL SMT_put(p%H%type, ’SPARSE_BY_ROWS’, s) ! Specify sparse-by-row

ALLOCATE(p%H%val(h_ne), p%H%col(h_ne), p%H%ptr(n + 1))

ALLOCATE(p%A%val(a_ne), p%A%col(a_ne), p%A%ptr(m + 1))

p%H%val = (/ 1.0_wp, 2.0_wp, 1.0_wp, 3.0_wp /) ! Hessian H

p%H%col = (/ 1, 2, 3, 3 /) ! NB lower triangular

p%H%ptr = (/ 1, 2, 3, 5 /) ! Set row pointers

! problem data complete

or using a dense storage format with the replacement lines

! dense storage format

CALL SMT_put(p%H%type, ’DENSE’, s) ! Specify dense

ALLOCATE(p%H%val(n * (n + 1) / 2))

p%H%val = (/ 1.0_wp, 0.0_wp, 2.0_wp, 0.0_wp, 1.0_wp, 3.0_wp /) ! Hessian

! problem data complete

respectively.

If instead H had been the diagonal matrix

H =

1

2

3

but the other data is as before, the diagonal storage scheme might be used for H, and in this case we would instead

CALL SMT_put(prob%H%type, ’DIAGONAL’, s) ! Specify dense storage for H

ALLOCATE(p%H%val(n))

p%H%val = (/ 1.0_wp, 2.0_wp, 3.0_wp /) ! Hessian values

The same problem may be solved using reverse communication with the following code:

! THIS VERSION: GALAHAD 3.3 - 03/06/2021 AT 08:15 GMT.

PROGRAM GALAHAD_BQP_SECOND_EXAMPLE

USE GALAHAD_BQP_double ! double precision version

IMPLICIT NONE

INTEGER, PARAMETER :: wp = KIND(1.0D+0) ! set precision

REAL (KIND = wp), PARAMETER :: infinity = 10.0_wp ** 20

TYPE (QPT_problem_type) :: p

TYPE (BQP_reverse_type) :: reverse

TYPE (BQP_data_type) :: data

TYPE (BQP_control_type) :: control

TYPE (BQP_inform_type) :: inform

TYPE (GALAHAD_userdata_type) :: userdata

INTEGER :: nflag, i, j, k, l

REAL (KIND = wp) :: v_j

INTEGER, PARAMETER :: n = 3, h_ne = 4, h_all = 5

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

16 BQP (March 18, 2022) GALAHAD

GALAHAD BQP

! INTEGER, PARAMETER :: n = 3, h_ne = 3, h_all = 3

INTEGER, ALLOCATABLE, DIMENSION(:) :: B_stat, FLAG, ROW, PTR

REAL (KIND = wp), ALLOCATABLE, DIMENSION(:) :: VAL

! start problem data

ALLOCATE(p%G(n), p%X_l(n), p%X_u(n))

ALLOCATE(p%X(n), p%Z(n))

ALLOCATE(B_stat(n), FLAG(n))

ALLOCATE(VAL(h_all), ROW(h_all), PTR(n + 1))

p%new_problem_structure = .TRUE. ! new structure

p%n = n ; p%f = 1.0_wp ! dimensions & objective constant

p%G = (/ 0.0_wp, 2.0_wp, 1.0_wp /) ! objective gradient

p%X_l = (/ - 1.0_wp, - infinity, 0.0_wp /) ! variable lower bound

p%X_u = (/ infinity, 1.0_wp, 2.0_wp /) ! variable upper bound

p%X = 0.0_wp ; p%Z = 0.0_wp ! start from zero

PTR = (/ 1, 3, 5, 6 /) ! whole Hessian by rows

ROW = (/ 1, 2, 1, 2, 3 /) ! for matrix-vector products

VAL = (/ 1.0_wp, 1.0_wp, 1.0_wp, 2.0_wp, 3.0_wp /)

! problem data complete

CALL BQP_initialize(data, control, inform) ! Initialize control parameters

control%infinity = infinity ! Set infinity

! control%print_level = 1 ! print one line/iteration

control%maxit = 40 ! limit the # iterations

! control%print_gap = 100 ! print every 100 terations

! control%exact_gcp = .FALSE.

nflag = 0 ; FLAG = 0

inform%status = 1

10 CONTINUE ! Solve problem - reverse commmunication loop

CALL BQP_solve(p, B_stat, data, control, inform, userdata, reverse)

SELECT CASE (inform%status)

CASE (0) ! Successful return

WRITE(6, "(’ BQP: ’, I0, ’ iterations ’, /, &

& ’ Optimal objective value =’, &

& ES12.4, /, ’ Optimal solution = ’, (5ES12.4))") &

inform%iter, inform%obj, p%X

CASE (2) ! compute H * v

reverse%PROD = 0.0_wp

DO j = 1, p%n

v_j = reverse%V(j)

DO k = PTR(j), PTR(j + 1) - 1

i = ROW(k)

reverse%PROD(i) = reverse%PROD(i) + VAL(k) * v_j

END DO

END DO

GO TO 10

CASE (3) ! compute H * v for sparse v

reverse%PROD = 0.0_wp

DO l = reverse%nz_v_start, reverse%nz_v_end

j = reverse%NZ_v(l) ; v_j = reverse%V(j)

DO k = PTR(j), PTR(j + 1) - 1

i = ROW(k)

reverse%PROD(i) = reverse%PROD(i) + VAL(k) * v_j

END DO

END DO

GO TO 10

CASE (4) ! compute H * v for very sparse v and record nonzeros

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD BQP (March 18, 2022) 17

BQP GALAHAD

nflag = nflag + 1

reverse%nz_prod = 0

DO l = reverse%nz_v_start, reverse%nz_v_end

j = reverse%NZ_v(l) ; v_j = reverse%V(j)

DO k = PTR(j), PTR(j + 1) - 1

i = ROW(k)

IF (FLAG(i) < nflag) THEN

FLAG(i) = nflag

reverse%PROD(i) = VAL(k) * v_j

reverse%nz_prod_end = reverse%nz_prod_end + 1

reverse%NZ_prod(reverse%nz_prod_end) = i

ELSE

reverse%PROD(i) = reverse%PROD(i) + VAL(k) * v_j

END IF

END DO

END DO

GO TO 10

CASE DEFAULT ! Error returns

WRITE(6, "(’ BQP_solve exit status = ’, I6) ") inform%status

END SELECT

CALL BQP_terminate(data, control, inform, reverse) ! delete workspace

DEALLOCATE(p%G, p%X, p%X_l, p%X_u, p%Z, B_stat, FLAG, PTR, ROW, VAL)

END PROGRAM GALAHAD_BQP_SECOND_EXAMPLE

Notice that storage for the Hessian is now not needed. This produces the same output.

The same problem may also be solved by user-provided matrix-vector products as follows:

! THIS VERSION: GALAHAD 3.3 - 03/06/2021 AT 08:15 GMT.

PROGRAM GALAHAD_BQP_THIRD_EXAMPLE

USE GALAHAD_BQP_double ! double precision version

IMPLICIT NONE

INTEGER, PARAMETER :: wp = KIND(1.0D+0) ! set precision

REAL (KIND = wp), PARAMETER :: infinity = 10.0_wp ** 20

TYPE (QPT_problem_type) :: p

TYPE (BQP_reverse_type) :: reverse

TYPE (BQP_data_type) :: data

TYPE (BQP_control_type) :: control

TYPE (BQP_inform_type) :: inform

TYPE (GALAHAD_userdata_type) :: userdata

INTEGER, PARAMETER :: n = 3, h_ne = 4, h_all = 5

INTEGER, PARAMETER :: len_integer = 2 * n + 3 + h_all, len_real = h_all

INTEGER, PARAMETER :: nflag = 2, st_flag = 2, st_ptr = st_flag + n

INTEGER, PARAMETER :: st_row = st_ptr + n + 1, st_val = 0

INTEGER, ALLOCATABLE, DIMENSION(:) :: B_stat

EXTERNAL :: HPROD

! start problem data

ALLOCATE(p%G(n), p%X_l(n), p%X_u(n))

ALLOCATE(p%X(n), p%Z(n))

ALLOCATE(userdata%integer(len_integer), userdata%real(len_real))

ALLOCATE(B_stat(n))

p%new_problem_structure = .TRUE. ! new structure

p%n = n ; p%f = 1.0_wp ! dimensions & objective constant

p%G = (/ 0.0_wp, 2.0_wp, 1.0_wp /) ! objective gradient

p%X_l = (/ - 1.0_wp, - infinity, 0.0_wp /) ! variable lower bound

p%X_u = (/ infinity, 1.0_wp, 2.0_wp /) ! variable upper bound

p%X = 0.0_wp ; p%Z = 0.0_wp ! start from zero

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

18 BQP (March 18, 2022) GALAHAD

GALAHAD BQP

! whole Hessian by rows for efficient matrix-vector products

userdata%integer(st_ptr + 1 : st_ptr + n + 1) = (/ 1, 3, 5, 6 /)

userdata%integer(st_row + 1 : st_row + h_all) = (/ 1, 2, 1, 2, 3 /)

userdata%real(st_val + 1 : st_val + h_all) &

= (/ 1.0_wp, 1.0_wp, 1.0_wp, 2.0_wp, 3.0_wp /)

! problem data complete

CALL BQP_initialize(data, control, inform) ! Initialize control parameters

control%infinity = infinity ! Set infinity

! control%print_level = 1 ! print one line/iteration

control%maxit = 40 ! limit the # iterations

! control%print_gap = 100 ! print every 100 terations

! control%exact_gcp = .FALSE.

userdata%integer(1) = n

userdata%integer(nflag) = 0

userdata%integer(st_flag + 1 : st_flag + n) = 0

inform%status = 1

CALL BQP_solve(p, B_stat, data, control, inform, userdata, &

eval_HPROD = HPROD)

IF (inform%status == 0) THEN ! Successful return

WRITE(6, "(’ BQP: ’, I0, ’ iterations ’, /, &

& ’ Optimal objective value =’, &

& ES12.4, /, ’ Optimal solution = ’, (5ES12.4))") &

inform%iter, inform%obj, p%X

ELSE

WRITE(6, "(’ BQP_solve exit status = ’, I6) ") inform%status

END IF

CALL BQP_terminate(data, control, inform) ! delete workspace

DEALLOCATE(p%G, p%X, p%X_l, p%X_u, p%Z, B_stat)

DEALLOCATE(userdata%integer, userdata%real)

END PROGRAM GALAHAD_BQP_THIRD_EXAMPLE

SUBROUTINE HPROD(status, userdata, V, PROD, NZ_v, nz_v_start, nz_v_end, &

NZ_prod, nz_prod_end)

! compute the matrix-vector product H * v

USE GALAHAD_USERDATA_double

INTEGER, PARAMETER :: wp = KIND(1.0D+0)

INTEGER, INTENT(OUT) :: status

TYPE (GALAHAD_userdata_type), INTENT(INOUT) :: userdata

REAL (KIND = wp), DIMENSION(:), INTENT(IN) :: V

REAL (KIND = wp), DIMENSION(:), INTENT(OUT) :: PROD

INTEGER, OPTIONAL, INTENT(IN) :: nz_v_start, nz_v_end

INTEGER, OPTIONAL, INTENT(INOUT) :: nz_prod_end

INTEGER, DIMENSION(:), OPTIONAL, INTENT(INOUT) :: NZ_v

INTEGER, DIMENSION(:), OPTIONAL, INTENT(INOUT) :: NZ_prod

INTEGER :: i, j, k, l, n, nflag, st_flag, st_ptr, st_row, st_val

REAL (KIND = wp) :: v_j

n = userdata%integer(1)

nflag = 2

st_flag = 2

st_ptr = st_flag + n

st_row = st_ptr + n + 1

st_val = 0

! compute H * v for very sparse v and record nonzeros

IF (PRESENT(NZ_prod) .AND. PRESENT(nz_prod_end)) THEN

userdata%integer(nflag) = userdata%integer(nflag) + 1

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD BQP (March 18, 2022) 19

BQP GALAHAD

nz_prod = 0

DO l = nz_v_start, nz_v_end

j = NZ_v(l) ; v_j = V(j)

DO k = userdata%integer(st_ptr + j), &

userdata%integer(st_ptr + j + 1) - 1

i = userdata%integer(st_row + k)

IF (userdata%integer(st_flag + i) < &

userdata%integer(nflag)) THEN

userdata%integer(st_flag + i) = userdata%integer(nflag)

PROD(i) = userdata%real(st_val + k) * v_j

nz_prod_end = nz_prod_end + 1

NZ_prod(nz_prod_end) = i

ELSE

PROD(i) = PROD(i) + userdata%real(st_val + k) * v_j

END IF

END DO

END DO

! compute H * v for sparse v

ELSE IF (PRESENT(NZ_v) .AND. PRESENT(nz_v_start) .AND. &

PRESENT(nz_v_end)) THEN

PROD = 0.0_wp

DO l = nz_v_start, nz_v_end

j = NZ_v(l) ; v_j = V(j)

DO k = userdata%integer(st_ptr + j), &

userdata%integer(st_ptr + j + 1) - 1

i = userdata%integer(st_row + k)

PROD(i) = PROD(i) + userdata%real(st_val + k) * v_j

END DO

END DO

! compute H * v

ELSE

PROD = 0.0_wp

DO j = 1, n

v_j = V(j)

DO k = userdata%integer(st_ptr + j), &

userdata%integer(st_ptr + j + 1) - 1

i = userdata%integer(st_row + k)

PROD(i) = PROD(i) + userdata%real(st_val + k) * v_j

END DO

END DO

END IF

status = 0

END SUBROUTINE HPROD

Now notice how the matrix H is passed to the matrix-vector product evaluation routine via the integer and real

components of the derived type userdata.

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

20 BQP (March 18, 2022) GALAHAD

