C interfaces to GALAHAD BLLS

Jari Fowkes and Nick Gould
STFC Rutherford Appleton Laboratory
Sat Mar 26 2022

1 GALAHAD C package blls 1
1.1 Introduction L e e e e e 1
111 PUrPOSE o e e 1

1. 1.2Authors o 1

—_

1.1.3 Originally released
1.1.4Terminology o e
11.5Method e
1.1.6 Reference L
1.1.7Callorder e
1.1.8 Unsymmetric matrix storage formats L o o
1.1.8.1 Dense row storage formato
1.1.8.2 Dense column storage format Lo
1.1.8.3 Sparse co-ordinate storage format oL Lo

1.1.8.4 Sparse row-wise storage format Lo

A A W W W W NN DD DN DN

1.1.8.5 Sparse column-wise storage format L.

2 File Index

24 FileList o e
3 File Documentation 7
3.1 galahad_blls.h File Reference 7
3.1.1 Data Structure Documentationo 7
3.1.1.1 struct blls_control_type 7
3.1.1.2struct blls_time_type L 9
3.1.1.3 struct blls_inform_type 9
3.1.2 Function Documentation 10
3.1.2.1 blls_initialize() 10
3.1.22blls_read _specfile() 10
3.1.23Dblls_import() 11
3.1.2.4 blls_import_without_a() 12
3.1.250blls_reset_control() 13
3.1.2.6Dblls_solve_given_a() 13
3.1.2.7 blls_solve_reverse_a_prod() 16
3.1.2.8 blls_information() 19
3.1.290Dlls_terminate() 20
4 Example Documentation 21
4.1DblIst.C . . e e e 21
42DblIstf.Cc . . e 24
Index 29

C interfaces to GALAHAD BLLS GALAHAD 4.0

Chapter 1

GALAHAD C package blls

1.1 Introduction

1.1.1 Purpose

This package uses a preconditioned, projected-gradient method to solve the bound-constrained regularized lin-
ear least-squares problem

1 1
minimize q(x) = q(z) = §||Ax —b|13 + §JHI”2
subject to the simple bound constraints
xé <z; <z, j=1,...,n,

where the m by n real matrix A, the vectors b, 2!, z* and the non-negative weight o are given. Any of the constraint

bounds xé and 3:;* may be infinite. Full advantage is taken of any zero coefficients of the Jacobian matrix A of the

residuals c(x) = Ax — b; the matrix need not be provided as there are options to obtain matrix-vector products
involving A and its transpose either by reverse communication or from a user-provided subroutine.

1.1.2 Authors

N. I. M. Gould, STFC-Rutherford Appleton Laboratory, England.

C interface, additionally J. Fowkes, STFC-Rutherford Appleton Laboratory.

1.1.3 Originally released

October 2019, C interface March 2022.

2 GALAHAD C package blls

1.1.4 Terminology

The required solution = necessarily satisfies the primal optimality conditions
CL‘l <z< xu’

the dual optimality conditions
(ATA+ oDz =ATb+ 2

where
z=z2'42% 2/>0 and 2% <0,

and the complementary slackness conditions
(z—2H)Tzl =0 and (z —2*)T2* =0,

where the vector z is known as the dual variables for the bounds, respectively, and where the vector inequalities
hold component-wise.

1.1.5 Method

The method is iterative. Each iteration proceeds in two stages. Firstly, a search direction s from the current estimate
of the solution x is computed. This may be in a scaled steepest-descent direction, or, if the working set of variables
on bounds has not changed dramatically, in a direction that provides an approximate minimizer of the objective
over a subspace comprising the currently free-variables. The latter is computed either using an appropriate sparse
factorization by the GALAHAD package SBLS, or by the conjugate-gradient least-squares (CGLS) method; tt may
be necessary to regularize the subproblem very slightly to avoid a ill-posedness. Thereafter, a piecewise linesearch
(arc search) is carried out along the arc z(«) = P(z + as) for « > 0, where the projection operator is defined
component-wise at any feasible point v to be

P;(v) = min(max(z;, xé), ry);

thus this arc bends the search direction into the feasible region. The arc search is performed either exactly, by
passing through a set of increasing breakpoints at which it changes direction, or inexactly, by evaluating a sequence
of different « on the arc. All computation is designed to exploit sparsity in A.

1.1.6 Reference

Full details are provided in

N. I. M. Gould (2022). Numerical methods for solving bound-constrained linear least squares problems. In prepara-
tion.

1.1.7 Call order

To solve a given problem, functions from the blls package must be called in the following order:

« blls_initialize - provide default control parameters and set up initial data structures
* blls_read_specfile (optional) - override control values by reading replacement values from a file
+ set up problem data structures and fixed values by caling one of

— blls_import - in the case that A is explicitly available

GALAHAD 4.0 C interfaces to GALAHAD BLLS

1.1 Introduction 3

— blls_import_without_a - in the case that only the effect of applying A and its transpose to a vector is
possible

* blls_reset_control (optional) - possibly change control parameters if a sequence of problems are being solved
+ solve the problem by calling one of

— blls_solve_given_a - solve the problem using values of A

— blls_solve_reverse_a_prod - solve the problem by returning to the caller for products of A and its trans-
pose with specified vectors

« blls_information (optional) - recover information about the solution and solution process

* blls_terminate - deallocate data structures

See Section 4.1 for examples of use.

1.1.8 Unsymmetric matrix storage formats

The unsymmetric m by n matrix A may be presented and stored in a variety of convenient input formats.

Both C-style (0 based) and fortran-style (1-based) indexing is allowed. Choose control.f_indexing as
false for C style and t rue for fortran style; the discussion below presumes C style, but add 1 to indices for the
corresponding fortran version.

Wrappers will automatically convert between 0-based (C) and 1-based (fortran) array indexing, so may be used
transparently from C. This conversion involves both time and memory overheads that may be avoided by supplying
data that is already stored using 1-based indexing.

1.1.8.1 Dense row storage format

The matrix A is stored as a compact dense matrix by rows, that is, the values of the entries of each row in turn are
stored in order within an appropriate real one-dimensional array. In this case, component n *x ¢ + j of the storage
array A_val will hold the value Aij for0<i<m—-1,0<53<n—-1

1.1.8.2 Dense column storage format

The matrix A is stored as a compact dense matrix by columns, that is, the values of the entries of each column in
turn are stored in order within an appropriate real one-dimensional array. In this case, component m * j + ¢ of the
storage array A_val will hold the value Aij for0<:1<m—-1,0<j535<n—-1.

1.1.8.3 Sparse co-ordinate storage format

Only the nonzero entries of the matrices are stored. For the [-th entry, 0 < [< ne — 1, of A, its row index i, column
index j and value A4;;, 0 < i <m —1,0 < j <n — 1, are stored as the [-th components of the integer arrays
A_row and A_col and real array A_val, respectively, while the number of nonzeros is recorded as A_ne = ne.

C interfaces to GALAHAD BLLS GALAHAD 4.0

4 GALAHAD C package blls

1.1.8.4 Sparse row-wise storage format

Again only the nonzero entries are stored, but this time they are ordered so that those in row i appear directly before
those in row i+1. For the i-th row of A the i-th component of the integer array A_ptr holds the position of the first
entry in this row, while A_ptr(m) holds the total number of entries plus one. The column indices j, 0 < 5 < n — 1,
and values A;; of the nonzero entries in the i-th row are stored in components | = A_ptr(i), ..., A_ptr(i+1)-1,
0 <17 < m — 1, of the integer array A_col, and real array A_val, respectively. For sparse matrices, this scheme
almost always requires less storage than its predecessors.

1.1.8.5 Sparse column-wise storage format

Again only the nonzero entries are stored, but this time they are ordered so that those in column j appear directly
before those in column j+1. For the j-th column of A the j-th component of the integer array A_ptr holds the
position of the first entry in this column, while A_ptr(n) holds the total number of entries plus one. The row indices i,
0 <7 <m —1, and values A;; of the nonzero entries in the j-th column are stored in components | = A_ptr(j), . . .,
A_ptr(j+1)-1, 0 < 5 < n — 1, of the integer array A_row, and real array A_val, respectively. Once again, for sparse
matrices, this scheme almost always requires less storage than the dense of coordinate formats.

GALAHAD 4.0 C interfaces to GALAHAD BLLS

Chapter 2

File Index

2.1 File List

Here is a list of all files with brief descriptions:

galahad_blls.h

6 File Index

GALAHAD 4.0 C interfaces to GALAHAD BLLS

Chapter 3

File Documentation

3.1

galahad_blls.h File Reference

#include <stdbool.h>

#include "galahad_precision.h"
#include "galahad_sbls.h"
#include "galahad_convert.h"

Data Structures

struct blls_control_type
struct blls_time_type
struct blls_inform_type

Functions

3.1.1

3.1.1.

void blls_initialize (void xxdata, struct blls_control_type xcontrol, int xstatus)

void blls_read_specfile (struct blls_control_type *control, const char specfile[])

void blls_import (struct blls_control_type xcontrol, void *xdata, int xstatus, int n, int m, const char A_type[],
int A_ne, const int A_row[], const int A_col[], const int A_ptr[])

void blls_import_without_a (struct blls_control_type xcontrol, void *xdata, int xstatus, int n, int m)

void blls_reset_control (struct blls_control_type xcontrol, void *xdata, int xstatus)

void blls_solve_given_a (void *xdata, void xuserdata, int xstatus, int n, int m, int A_ne, const real_wp_ A _«
val[], const real_wp_ b[], const real_wp_ x_I[], const real_wp_ x_u[], real_wp_ y[], real_wp_ z[], real_wp_
c[], real_wp_ g[], int x_stat[], int(xeval_prec)(int, const real_wp_[], real_wp_[], const void x))

void blls_solve_reverse_a_prod (void *xdata, int xstatus, int xeval_status, int n, int m, const real_wp_ b[],
const real_wp_ x_I[], const real_wp_ x_u[], real_wp_ y[], real_wp_ z[], real_wp_ c[], real_wp_ g[], int x«
_stat[], real_wp_ v[], const real_wp_ p[], int nz_v[], int xnz_v_start, int xnz_v_end, const int nz_p[], int
nz_p_end)

void blls_information (void *xdata, struct blls_inform_type xinform, int xstatus)

void blls_terminate (void *xdata, struct blls_control_type xcontrol, struct blls_inform_type xinform)

Data Structure Documentation

1 struct blls_control_type

control derived type as a C struct

Examples

blist.c, and bllstf.c.

File Documentation

Data Fields
bool | f_indexing use C or Fortran sparse matrix indexing
int | error unit number for error and warning diagnostics
int | out general output unit number
int | print_level the level of output required
int | start_print on which iteration to start printing
int | stop_print on which iteration to stop printing
int | print_gap how many iterations between printing
int | maxit how many iterations to perform (-ve reverts to
HUGE(1)-1)
int | cold_start cold_start should be set to 0 if a warm start is
required (with variable assigned according to
X_stat, see below), and to any other value if the
values given in prob.X suffice
int | preconditioner the preconditioner (scaling) used. Possible values
are: /li 0. no preconditioner. /li 1. a diagonal
preconditioner that normalizes the rows of A. /li
anything else. a preconditioner supplied by the
user either via a subroutine call of eval_prec} or
via reverse communication.
int | ratio_cg_vs_sd the ratio of how many iterations use CGLS rather
than steepest descent
int | change_max the maximum number of per-iteration changes in
the working set permitted when allowing CGLS
rather than steepest descent
int | cg_maxit how many CG iterations to perform per BLLS
iteration (-ve reverts to n+1)
int | arcsearch_max_steps the maximum number of steps allowed in a
piecewise arcsearch (-ve=infini
int | sif_file_device the unit number to write generated SIF file
describing the current probl
real_wp_ | weight the objective function will be regularized by adding
1/2 weight ||x||"2
real_wp_ | infinity any bound larger than infinity in modulus will be
regarded as infinite
real_wp_ | stop_d the required accuracy for the dual infeasibility
real_wp_ | identical_bounds_tol any pair of constraint bounds (x_|,x_u) that are
closer than identical_bounds_tol will be reset to
the average of their values
real_wp_ | stop_cg_relative the CG iteration will be stopped as soon as the
current norm of the preconditioned gradient is
smaller than max(stop_cg_relative * initial
preconditioned gradient, stop_cg_absolute)
real_wp_ | stop_cg_absolute
real_wp_ | alpha_max the largest permitted arc length during the
piecewise line search
real_wp_ | alpha_initial the initial arc length during the inexact piecewise
line search
real_wp_ | alpha_reduction the arc length reduction factor for the inexact
piecewise line search
real_wp_ | arcsearch_acceptance_tol | the required relative reduction during the inexact

piecewise line search

GALAHAD 4.0

C interfaces to GALAHAD BLLS

3.1 galahad_blis.h File Reference

Data Fields
real_wp_ | stabilisation_weight the stabilisation weight added to the
search-direction subproblem
real_wp_ | cpu_time_limit the maximum CPU time allowed (-ve = no limit)

bool | direct_subproblem_solve direct_subproblem_solve is true if the
least-squares subproblem is to be solved using a
matrix factorization, and false if conjugate
gradients are to be preferred

bool | exact_arc_search exact_arc_search is true if an exact arc_search is
required, and false if an approximation suffices

bool | advance advance is true if an inexact exact arc_search can
increase steps as well as decrease them

bool | space_critical if space_critical is true, every effort will be made to
use as little space as possible. This may result in
longer computation times

bool | deallocate_error_fatal if deallocate_error_fatal is true, any array/pointer
deallocation error will terminate execution.
Otherwise, computation will continue

bool | generate_sif_file if generate_sif_file is true, a SIF file describing the
current problem will be generated

char | sif file_name[31] name (max 30 characters) of generated SIF file
containing input problem

char | prefix[31] all output lines will be prefixed by a string (max 30
characters) prefix(2:LEN(TRIM(.prefix))-1) where
prefix contains the required string enclosed in
quotes, e.g. "string" or 'string’'

struct sbls_control_type | sbls_control control parameters for SBLS
struct convert_control_type | convert_control control parameters for CONVERT

3.1.1.2 struct blis_time_type

time derived type as a C struct

Data Fields
real_sp_ | total total time
real_sp_ | analyse | time for the analysis phase
real_sp_ | factorize | time for the factorization phase
real_sp_ | solve time for the linear solution phase

3.1.1.3 struct blls_inform_type

inform derived type as a C struct

Examples

bllst.c, and bllstf.c.

C interfaces to GALAHAD BLLS

GALAHAD 4.0

10 File Documentation

Data Fields

int | status reported return status.
int | alloc_status Fortran STAT value after allocate failure.
int | factorization_status | status return from factorization
int | iter number of iterations required
int | cg_iter number of CG iterations required

real_wp_ | obj current value of the objective function

real_wp_ | norm_pg current value of the projected gradient

char | bad_alloc[81] name of array which provoked an allocate failure
struct blls_time_type | time times for various stages
struct sbls_inform_type | sbls_inform inform values from SBLS
struct convert_inform_type | convert_inform inform values for CONVERT

3.1.2 Function Documentation

3.1.2.1 blis_initialize()

void blls_initialize (
void *x data,
struct blls_control_type * control,

int % status)

Set default control values and initialize private data

Parameters
in,out | data holds private internal data
out control | is a struct containing control information (see blls_control_type)
out status | is a scalar variable of type int, that gives the exit status from the package. Possible
values are (currently):
+ 0. The import was succesful.
Examples

bllst.c, and bllstf.c.

3.1.2.2 blls_read_specfile()

void blls_read_specfile (
struct blls_control_type x control,

const char specfile[])

GALAHAD 4.0 C interfaces to GALAHAD BLLS

3.1 galahad_blls.h File Reference 11

Read the content of a specification file, and assign values associated with given keywords to the corresponding
control parameters. By default, the spcification file will be named RUNBLLS.SPC and lie in the current directory.
Refer to Table 2.1 in the fortran documentation provided in $§GALAHAD/doc/blls.pdf for a list of keywords that may

be set.

Parameters
in, out | control | is a struct containing control information (see blls_control_type)
in specfile | is a character string containing the name of the specification file

3.1.2.3 blis_import()

void blls_import (

struct blls_control_type * control,

void =% data,

int % status,

int n,

int m,

const char A _type[],

int A _ne,

const int A_row[],

const int A_col[],

const int A ptr[])

Import problem data into internal storage prior to solution.

Parameters
in control | is a struct whose members provide control paramters for the remaining prcedures (see
blls_control_type)
in,out | data holds private internal data
in,out | status | is a scalar variable of type int, that gives the exit status from the package. Possible
values are:

» 1. The import was succesful, and the package is ready for the solve phase

» -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

» -2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

» -3. The restrictions n > 0, m > 0 or requirement that type contains its relevant
string 'coordinate’, 'sparse_by_rows', 'sparse_by_columns', 'dense_by_rows', or
'dense_by_columns'; has been violated.

in n is a scalar variable of type int, that holds the number of variables.
in m is a scalar variable of type int, that holds the number of residuals.

C interfaces to GALAHAD BLLS

GALAHAD 4.0

12

File Documentation

Parameters

in

A_type

is a one-dimensional array of type char that specifies the symmetric storage scheme
used for the Jacobian A. It should be one of 'coordinate’, 'sparse_by_rows',
'sparse_by_columns', 'dense_by_rows', or 'dense_by_columns'; lower or upper case
variants are allowed.

in

A _ne

is a scalar variable of type int, that holds the number of entries in A in the sparse
co-ordinate storage scheme. It need not be set for any of the other schemes.

in

A_row

is a one-dimensional array of size A_ne and type int, that holds the row indices of A in
the sparse co-ordinate or sparse column-wise storage scheme. It need not be set for
any of the other schemes, and in this case can be NULL.

in

A_col

is a one-dimensional array of size A_ne and type int, that holds the column indices of A
in either the sparse co-ordinate, or the sparse row-wise storage scheme. It need not be
set for any of the other schemes, and in this case can be NULL.

in

A_ptr

is a one-dimensional array of size n+1 or m+1 and type int, that holds the starting
position of each row of A, as well as the total number of entries plus one, in the sparse
row-wise storage scheme, or the starting position of each column of A, as well as the
total number of entries plus one, in the sparse column-wise storage scheme. It need
not be set when the other schemes are used, and in this case can be NULL.

Examples

bllst.c, and bllstf.c.

3.1.2.4 blls_import_without_a()

void blls_import_without_a (

struct blls_control_type * control,

void *x data,

int % status,

int n,

int m

Import problem data into internal storage prior to solution.

Parameters

in

control

is a struct whose members provide control paramters for the remaining prcedures (see
blls_control_type)

in, out

data

holds private internal data

in, out

status

is a scalar variable of type int, that gives the exit status from the package. Possible
values are:

» 1. The import was succesful, and the package is ready for the solve phase

» -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

» -2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and

GALAHAD 4.0

inform-bad_—attoc respectively:
C interfaces to GALAHAD BLLS

« -3. The restriction n > 0 or m > 0 has been violated.

3.1 galahad_blis.h File Reference 13
Parameters

in n is a scalar variable of type int, that holds the number of variables.

in m is a scalar variable of type int, that holds the number of residuals.
Examples

blist.c, and bllstf.c.

3.1.2.5 blis_reset_control()

void blls_reset_control (

struct blls_control_type * control,
void *x data,

int % status)

Reset control parameters after import if required.

Parameters
in control | is a struct whose members provide control paramters for the remaining prcedures (see
blls_control_type)
in, out | data holds private internal data
in,out | status | is a scalar variable of type int, that gives the exit status from the package. Possible

values are:

» 1. The import was succesful, and the package is ready for the solve phase

3.1.2.6 blls_solve_given_a()

void blls_solve_given_a (

void ** data,

void % userdata,

int % status,

int n,

int m,

int A ne,

const real_wp_ A vall],
const real_wp_ b[],
const real_wp_ x 1[],
const real_wp_ x ul],
real_wp_ y/[],
real_wp_ z[],
real_wp_ c[],

real_wp_ gl],

C interfaces to GALAHAD BLLS

GALAHAD 4.0

14 File Documentation

int x _stat/[],

int () (int, const real_wp_[], real_wp_[], const void *) eval_ prec)

Solve the bound-constrained linear least-squares problem when the Jacobian A is available.

GALAHAD 4.0 C interfaces to GALAHAD BLLS

3.1 galahad_blls.h File Reference 15

Parameters

in, out

data

holds private internal data

in

userdata

is a structure that allows data to be passed into the function and derivative evaluation
programs.

in, out

status

is a scalar variable of type int, that gives the entry and exit status from the package.
On initial entry, status must be set to 1.
Possible exit are:

« 0. The run was succesful.

» -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

» -2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

+ -3. The restrictions n > 0, m > 0 or requirement that a type contains its
relevant string 'coordinate’, 'sparse_by_rows', 'sparse_by_columns',
'dense_by_rows' or 'dense_by_columns' has been violated.

» -4. The simple-bound constraints are inconsistent.

» -9. The analysis phase of the factorization failed; the return status from the
factorization package is given in the component inform.factor_status

» -10. The factorization failed; the return status from the factorization package is
given in the component inform.factor_status.

+ -18. Too many iterations have been performed. This may happen if
control.maxit is too small, but may also be symptomatic of a badly scaled
problem.

» -19. The CPU time limit has been reached. This may happen if
control.cpu_time_limit is too small, but may also be symptomatic of a badly
scaled problem.

in

is a scalar variable of type int, that holds the number of variables

in

is a scalar variable of type int, that holds the number of residuals.

in

A_ne

is a scalar variable of type int, that holds the number of entries in the lower triangular
part of the Hessian matrix H.

in

A val

is a one-dimensional array of size A_ne and type double, that holds the values of the
entries of the lower triangular part of the Hessian matrix H in any of the available
storage schemes.

in

is a one-dimensional array of size m and type double, that holds the constant term b
in the residuals. The i-th component of b, i =0, ... , m-1, contains b;.

in

x |/

is a one-dimensional array of size n and type double, that holds the lower bounds z*
on the variables x. The j-th component of x_I, j =0, ..., n-1, contains xé

in

is a one-dimensional array of size n and type double, that holds the upper bounds

on the variables x. The j-th component of x_u, j=0, ... , n-1, contains :cé

in, out

is a one-dimensional array of size n and type double, that holds the values x of the
optimization variables. The j-th component of x, j = 0, ... , n-1, contains x ;.

in, out

is a one-dimensional array of size n and type double, that holds the values z of the
dual variables. The j-th component of z, j =0, ... , n-1, contains z;.

C interfaces to GALAHAD BLLS

GALAHAD 4.0

16 File Documentation

Parameters
out c is a one-dimensional array of size m and type double, that holds the values of the
residuals ¢ = Az — b. The i-th component of ¢, i = 0, ... , m-1, contains ¢;.
out g is a one-dimensional array of size n and type double, that holds the values of the
gradient g = AT¢. The j-th component of g, =0, ..., n-1, contains g;.
in, out | x_stat is a one-dimensional array of size n and type int, that gives the optimal status of the
problem variables. If x_stat(j) is negative, the variable x; most likely lies on its lower
bound, if it is positive, it lies on its upper bound, and if it is zero, it lies between its
bounds.
eval_prec | is an optional user-supplied function that may be NULL. If non-NULL, it must have
the following signature:
int eval_prec(int n, const double v[], double pIl], const void =*userdata)
The product p = P~!v involving the user's preconditioner P with the vector v = v,
the result p must be retured in p, and the function return value set to 0. If the
evaluation is impossible, return should be set to a nonzero value. Data may be
passed into eval_prec via the structure userdata.
Examples

bllst.c, and bllstf.c.

3.1.2.7 blis_solve_reverse_a_prod()

void blls_solve_reverse_a_prod (
void xx data,
int * status,
int * eval_status,
int n,
int m,
const real_wp_ b[],
const real_wp_ x 1[],
const real_wp_ x ul],
real_wp_ y[],
real_wp_ z[],
real_wp_ c[],
real_wp_ g[],
int x stat[],
real_wp_ v[],
const real_wp_ p[],
int nz_v[],
int * nz v_start,
int * nz_v_end,
const int nz p[],

int nz_p_end)

Solve the bound-constrained linear least-squares problem when the products of the Jacobian A and its transpose
with specified vectors may be computed by the calling program.

Parameters

in, out | data holds private internal data

GALAHAD 4.0 C interfaces to GALAHAD BLLS

3.1 galahad_blls.h File Reference 17

Parameters

in, out | status

is a scalar variable of type int, that gives the entry and exit status from the package.

Possible exit are:

* 0. The run was succesful.

« -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status
and inform.bad_alloc respectively.

» -2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status
and inform.bad_alloc respectively.

« -3. The restriction n > 0 or requirement that a type contains its relevant
string 'coordinate’, 'sparse_by_rows', 'sparse_by_columns', 'dense_by_rows'
or 'dense_by_columns' has been violated.

* -4. The simple-bound constraints are inconsistent.

» -9. The analysis phase of the factorization failed; the return status from the
factorization package is given in the component inform.factor_status

» -10. The factorization failed; the return status from the factorization package
is given in the component inform.factor_status.

» -11. The solution of a set of linear equations using factors from the
factorization package failed; the return status from the factorization package
is given in the component inform.factor_status.

+ -18. Too many iterations have been performed. This may happen if
control.maxit is too small, but may also be symptomatic of a badly scaled
problem.

» -19. The CPU time limit has been reached. This may happen if
control.cpu_time_limit is too small, but may also be symptomatic of a badly
scaled problem.

C interfaces to GALAHAD BLLS

GALAHAD 4.0

18

File Documentation

Parameters

status

(continued)

« 2. The product Av of the residual Jacobian A with a given output vector v is
required from the user. The vector v will be stored in v and the product Av
must be returned in p, status_eval should be set to 0, and
blls_solve_reverse_a_prod re-entered with all other arguments unchanged.
If the product cannot be formed, v need not be set, but
blls_solve_reverse_a_prod should be re-entered with eval_status set to a
nonzero value.

« 3. The product A”v of the transpose of the residual Jacobian A with a given
output vector v is required from the user. The vector v will be stored in v and
the product ATy must be returned in p, status_eval should be set to 0, and
blls_solve_reverse_a_prod re-entered with all other arguments unchanged.
If the product cannot be formed, v need not be set, but
blls_solve_reverse_a_prod should be re-entered with eval_status set to a
nonzero value.

* 4. The product Av of the residual Jacobian A with a given sparse output
vector v is required from the user. The nonzero components of the vector v
will be stored as entries nz_in[nz_in_start-1:nz_in_end-1] of v and the
product Av must be returned in p, status_eval should be set to 0, and
blls_solve_reverse_a_prod re-entered with all other arguments unchanged;
The remaining components of v should be ignored. If the product cannot be
formed, v need not be set, but blls_solve_reverse_a_prod should be
re-entered with eval_status set to a nonzero value.

« 5. The nonzero components of the product Av of the residual Jacobian A
with a given sparse output vector v is required from the user. The nonzero
components of the vector v will be stored as entries
nz_in[nz_in_start-1:nz_in_end-1] of v; the remaining components of v should
be ignored. The resulting nonzeros in the product Av must be placed in
their appropriate comnponents of p, while a list of indices of the nonzeros
placed in nz_out[0 : nz_out_end-1] and the number of nonzeros recorded in
nz_out_end. Additionally, status_eval should be set to 0, and
blls_solve_reverse_a_prod re-entered with all other arguments unchanged.
If the product cannot be formed, v, nz_out_end and nz_out need not be set,
but blls_solve_reverse_a_prod should be re-entered with eval_status set to a
nonzero value.

+ 6. A subset of the product ATv of the transpose of the residual Jacobian A
with a given output vector v is required from the user. The vector v will be
stored in v and components nz_in[nz_in_start-1:nz_in_end-1] of the product
AT» must be returned in the relevant components of p (the remaining
components should not be set), status_eval should be set to 0, and
blls_solve_reverse_a_prod re-entered with all other arguments unchanged.
If the product cannot be formed, v need not be set, but
blls_solve_reverse_a_prod should be re-entered with eval_status set to a
nonzero value.

« 7. The product P~ v of the inverse of the preconditioner P with a given
output vector v is required from the user. The vector v will be stored in v and
the product P~v must be returned in p, status_eval should be set to 0, and
blls_solve_reverse_a_prod re-entered with all other arguments unchanged.
If the product cannot be formed, v need not be set, but
blls_solve_reverse_a_prod should be re-entered with eval_status set to a
nonzero value. This value of status can only occur if the user has set
control.preconditioner = 2.

GALAHAD 4.0

C interfaces to GALAHAD BLLS

3.1 galahad_blis.h File Reference 19

Parameters

in, out | eval_status | is a scalar variable of type int, that is used to indicate if the matrix products can be
provided (see status above)

in n is a scalar variable of type int, that holds the number of variables

in m is a scalar variable of type int, that holds the number of residuals.

in b is a one-dimensional array of size m and type double, that holds the constant term
b in the residuals. The i-th component of b, i = 0, ... , m-1, contains b;.

in x_I is a one-dimensional array of size n and type double, that holds the lower bounds
2! on the variables . The j-th component of x_I,j =0, ... , n-1, contains xé

in X u is a one-dimensional array of size n and type double, that holds the upper bounds
«! on the variables z. The j-th component of x_u, j=0, ... , n-1, contains xé

in,out | x is a one-dimensional array of size n and type double, that holds the values z of the
optimization variables. The j-th component of x, j =0, ... , n-1, contains z;.

out c is a one-dimensional array of size m and type double, that holds the values of the
residuals ¢ = Ax — b. The i-th component of ¢, i =0, ... , m-1, contains ¢;.

out g is a one-dimensional array of size n and type double, that holds the values of the
gradient g = ATc. The j-th component of g, j =0, ..., n-1, contains g;.

in,out | z is a one-dimensional array of size n and type double, that holds the values z of the
dual variables. The j-th component of z, j = 0, ... , n-1, contains z;.

in, out | x_stat is a one-dimensional array of size n and type int, that gives the optimal status of the
problem variables. If x_stat(j) is negative, the variable x; most likely lies on its
lower bound, if it is positive, it lies on its upper bound, and if it is zero, it lies
between its bounds.

out v is a one-dimensional array of size n and type double, that is used for reverse
communication (see status=2-4 above for details)

in p is a one-dimensional array of size n and type double, that is used for reverse
communication (see status=2-4 above for details)

out nz.v is a one-dimensional array of size n and type int, that is used for reverse
communication (see status=3-4 above for details)

out nz_v_start | is a scalar of type int, that is used for reverse communication (see status=3-4
above for details)

out nz_v_end is a scalar of type int, that is used for reverse communication (see status=3-4
above for details)

in nz_p is a one-dimensional array of size n and type int, that is used for reverse
communication (see status=4 above for details)

in nz_p_end is a scalar of type int, that is used for reverse communication (see status=4 above
for details)

Examples

bllst.c, and bllstf.c.

3.1.2.8 blls_information()

void blls_information (

Provides output information

void *x data,

struct blls_inform type * inform,

int * status)

C interfaces to GALAHAD BLLS

GALAHAD 4.0

20

File Documentation

Parameters
in, out | data holds private internal data
out inform | is a struct containing output information (see blls_inform_type)
out status | is a scalar variable of type int, that gives the exit status from the package. Possible
values are (currently):
0. The values were recorded succesfully
Examples

bllst.c, and bllstf.c.

3.1.2.9 blls_terminate()

void blls_terminate

(

void =% data,

struct blls_control_type * control,

struct blls_inform type * inform)

Deallocate all internal private storage

Parameters
in,out | data holds private internal data
out control | is a struct containing control information (see blls_control_type)
out inform | is a struct containing output information (see blls_inform_type)
Examples

bllst.c, and bllstf.c.

GALAHAD 4.0

C interfaces to GALAHAD BLLS

Chapter 4

Example Documentation

4.1 blist.c

This is an example of how to use the package to solve a bound-constrained linear least-squares problem. A variety
of supported Jacobian storage formats are shown. An example of preconditioning, in this case with the identity
matrix which actually achieves nothing, is also illustrated.

Notice that C-style indexing is used, and that this is flaggeed by setting control.f_indexingto false.
/* bllst.c =/
/% Full test for the BLLS C interface using C sparse matrix indexing =/
#include <stdio.h>
#include <math.h>
#include <string.h>
#include "galahad_blls.h"
// define max
#define max(a,b)
({
__typeof
__typeof
_a > _b?
})
// Custom userdata struct
struct userdata_type {
double scale;
Vi
// Function prototypes
int prec(int n, const double v[], double p[], const void x);
int main(void) {
// Derived types
void xdata;
struct blls_control_type control;
struct blls_inform_type inform;
// Set user data
struct userdata_type userdata;
userdata.scale = 1.0;
// Set problem data
int n = 10; // dimension
int m = n + 1; // number of residuals
int A_ne = 2 x n; // sparse Jacobian elements
int A_dense_ne = m * n; // dense Jacobian elements
// row-wise storage
int A_row[A_ne]; // row indices,
int A_col[A_nel]; // column indices
int A_ptr[m+l]; // row pointers
double A_val[A_nel; // values
double A_dense[A_dense_ne]; // dense values
// column-wise storage
int A_by_col_row[A_nel; // row indices,
int A_by_col_ptr[n+l]; // column pointers
double A_by_col_val[A_ne]; // values
double A_by_col_dense[A_dense_ne]; // dense values
double b[m]; // linear term in the objective
double x_1[n]; // variable lower bound
double x_u[n]; // variable upper bound

22

Example Documentation

double x[n]; // variables

double z[n]; // dual variables
double c[m]; // residual

double g[n]; // gradient

// Set output storage

int x_stat[n]; // variable status
char st[3];

int 1, 1, status;

x_1[0] = -1.0;
for(int 1 = 1; 1 < n; i++) x_1[i] = - INFINITY;
x_ul[0] = 1.0;
x_u[l] = INFINITY;
for(int i = 2; 1 < n; i++) x_ul[i] = 2.0;
// A= (I) andb = (i * e
// (e"T) (n+ 1)
for(int 1 = 0; 1 < n; i++) b[i] = i + 1;
b[n] = n+l;
// A by rows
for(int 1 = 0; 1 < n; i++)
{
A_ptr([i] = 1i;
A_row[i] = 1; A_col[i] = i; A_val[i] = 1.0;
}
A _ptr[n] = n;
for(int i = 0; 1 < n; 1i++)
{
A_row[n+i] = n; A_col[n+i] = 1i; A_val[n+i] = 1.0;
}
A_ptr[m] = A_ne;
1 =-1;
for(int 1 = 0; 1 < n; i++)
{
for(int 3 = 0; J < n; Jj++)
{
=1.0;
= 0.0;
}
}
for(int 3 = 0; J < n; Jj++)
{
1 =1+ 1;
A_dense[l] = 1.0;
}
// A by columns
1 =-1;
for(int 3 = 0; J < n; Jj++)
{
1 =1+1; A by col ptr[j] =1 ;
A_by_col_row[l] = j ; A_by_col_val[l] = 1.0;
1 =1+ 1;
A_by_col_row[l] = n ; A by col _val[l] = 1.0;

}
A_by_col_ptr[n] = A_ne;

1 =-1;
for(int j = 0; J < n; Jj++)
{

for(int 1 = 0; i < n; i++4)
1 =1+ 1;
it (1==3) {
A_by_col_dense[l] = 1.0;
}
else {
A_by_col_dense[l] = 0.0;
}
}
1=1+1;
A_by_col_dense[l] = 1.0;

}
printf (" C sparse matrix indexing\n\n");
printf (" basic tests of blls storage formats\n\n");
for (int d=1; d <= 5; d++) {
// Initialize BLLS
blls_initialize(&data, &control, &status);
// Set user-defined control options

control.f_indexing = false; // C sparse matrix indexing

// Start from 0
for(int 1 = 0; 1 < n; i++) x[1] =
~(int 1 = 0; i < n; i++) z[i]

7

0.0
0.0;

// sparse co-ordinate storage
strcpy (st, "CO");

GALAHAD 4.0

C interfaces to GALAHAD BLLS

4.1 blist.c

23

blls_import (&control, &data, &status, n, m,
"coordinate", A_ne, A_row, A_col, NULL);
blls_solve_given_a(&data, &userdata, &status, n, m,
A_ne, A_val, b, x_1, x_u,
%X, z, ¢, g, X_stat, prec);

>reak;
2: // sparse by rows
strcpy (st, "SR");
blls_import (&control, &data, &status, n, m,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr);
blls_solve_given_a(&data, &userdata, &status, n, m,
A_ne, A_val, b, x_1, x_u,
x, z, ¢, g, x_stat, prec);

break;
3: // dense by rows
strcpy (st, "DR");
blls_import (&control, &data, &status, n, m,
"dense_by_rows", A_dense_ne, NULL, NULL, NULL);
blls_solve_given_a(&data, &userdata, &status, n, m,
A_dense_ne, A_dense, b, x_1, x_u,
x, z, ¢, g, x_stat, prec);

break;
4: // sparse by columns
strcpy (st, "sC");
blls_import (&control, &data, &status, n, m,
"sparse_by_columns", A _ne, A_by_col_row,
NULL, A_by_col_ptr);
blls_solve_given_a(&data, &userdata, &status, n, m,
A_ne, A_by_col_val, b, x_1, x_u,
x, 2z, ¢, g, x_stat, prec);

break;
case 5: // dense by columns
strcpy (st, "DC");
blls_import (&control, &data, &status, n, m,
"dense_by_columns", A_dense_ne, NULL, NULL, NULL
blls_solve_given_a(&data, &userdata, &status, n, m,
A_dense_ne, A_by_col_dense, b, x_1, x_u,
%X, z, ¢, g, X_stat, prec);
break;
}

blls_information(&data, &inform, &status);

if(inform.status == 0) {
printf ("$s:%61 iterations. Optimal objective value = $5.2f"
" status = %1i\n",
st, inform.iter, inform.obj, inform.status);
telse{
printf ("$s: BLLS_solve exit status = %li\n", st, inform.status);
}
//printf ("x: ");
//for(int 1 = 0; 1 < n; i++) printf("$f ", x[1i]);
//printf ("\n");
//printf ("gradient: ");
//for(int i = 0; 1 < n; i++) printf("$f ", glil);

//printf ("\n");
// Delete internal workspace
blls_terminate(&data, &control, &inform);
}
printf("\n tests reverse-communication options\n\n");
// reverse—communication input/output
int nm;
nm = max(n, m);
int eval_status, nz_v_start, nz_v_end, nz_p_end;
int nz_v[nm], nz_p[m], mask[m];
double v[nm], p[nm];
nz_p_end = 0;
// Initialize BLLS
blls_initialize(&data, &control, &status);
// Set user-defined control options
control.f_indexing = false; // C sparse matrix indexing
// Start from 0

£ (int 1 = 0; 1 < n; i++) x[1i] = 0.0;
for(int 1 = 0; i < n; i++) z[i] = 0.0;
strcpy (st, "RC");

for(int 1 = 0; 1 < m; i++) mask[i] = 0;

blls_import_without_a(&control, &data, &status, n, m) ;
while (true){ // reverse-communication loop
blls_solve_reverse_a_prod(&data, &status, &eval_status, n, m, b,
x 1, x u, %, z, ¢, g, x_stat, v, p,
nz_v, &nz_v_start, &nz_v_end,
nz_p, nz_p_end);
if(status == 0){ // successful termination
break;

}els f(status < 0){ // error exit

break;
}else if(status == 2){ // evaluate p = Av
pln]=0.0;
for(int 1 = 0; i < n; i++){

)i

C interfaces to GALAHAD BLLS

GALAHAD 4.0

24

Example Documentation

pli] = vI[il];
pln] = pln] + vI[i];
}
}else if(status == 3){ // evaluate p = A"Tv
r(int 1 = 0; i < n; i++) pl[i] = v[i] + v[n];
}else if(status == 4){ // evaluate p = Av for sparse v
= 0; 1 < n; i++) p[i] = 0.0;
= nz_v_start - 1; 1 < nz_v_end; 1++){
i =nz_v[1l];
pli] = v[i];
pln] = pln] + v[i];
}
}else “(status == 5){ // evaluate p = sparse Av for sparse v
nz_p_end = 0;
for(int 1 = nz_v_start - 1; 1 < nz_v_end; 1++){
i = nz_vI[1l];
if (mask[i] == 0){
mask[i] = 1;
nz_p[nz_p_end] = i;
nz_p_end = nz_p_end + 1;
pli] = vI[il;
}
(mask[n] == 0){
mask[n] = 1;
nz_pl[nz_p_end] = n;
nz_p_end = nz_p_end + 1;
plnl = vI[il;
telse{
pln] = pln] + vI[i];
}
}
fo int 1 = 0; 1 < nz_p_end; 1l++) mask[nz_p[l]] = 0;
f (status == 6){ // evaluate p = sparse A"Tv
int 1 = nz_v_start - 1; 1 < nz_v_end; 1++){
nz_v[1];
pli)l = vI[i] + v[nl;
f(status == 7){ // evaluate p = P"{-}v
int 1 = 0; i < n; i++) pl[i] = userdata.scale x v[i];
printf (" the value %1i of status should not occur\n", status);
reak;
}
eval_status = 0;

}

// Record solution information
blls_information(&data, &inform, &status);
// Print solution details

if(inform.status == 0) {
printf ("$s:%61 iterations. Optimal objective value = $5.2f"
" status = %1i\n",

st, inform.iter, inform.obj, inform.status);
telse{
printf("$s: BLLS_solve exit status = %1i\n", st, inform.status);
}
//printf ("x: ");
//for(int i = 0; 1 < n; i++) printf("$f ", x[i]);
//printf ("\n");
//printf ("gradient: ");
//for(int i = 0; i < n; i++) printf("$f ", gli]);
//printf ("\n");
// Delete internal workspace
blls_terminate(&data, &control, &inform);
}
// Apply preconditioner

int prec(int n, const double v[], double p[], const void xuserdata) {
struct userdata_type smyuserdata = (struct userdata_type *) userdata;
double scale = myuserdata->scale;
for(int 1 = 0; 1 < n; i++) p[i] = scale x v[i];
e ‘n 0;

4.2 Dblistf.c

This is the same example, but now fortran-style indexing is used.

/* bllstf.c =/

/% Full test for the BLLS C interface using fortran sparse matrix indexing
#include <stdio.h>

#include <math.h>

*/

GALAHAD 4.0

C interfaces to GALAHAD BLLS

4.2 blistf.c 25

#include <string.h>
#include "galahad_blls.h"
// define max

#define max (a,b)

(1

e

__typeof__ (a) _a = (a);
__typeof__ (b) _b = (b);
_a > _b ? _a : b;

})
// Custom userdata struct
struct userdata_type {
double scale;
}i
// Function prototypes
int prec(int n, const double v[], double p[], const void x);
int main(void) {
// Derived types
void =xdata;
struct blls_control_type control;
struct blls_inform_type inform;
// Set user data
struct userdata_type userdata;
userdata.scale = 1.0;
// Set problem data
int n = 10; // dimension
int m = n + 1; // number of residuals
int A_ne = 2 x n; // sparse Jacobian elements
int A_dense_ne = m * n; // dense Jacobian elements
// row-wise storage
int A_row[A_nel]; // row indices,
int A_col[A_ne]; // column indices
int A_ptr[m+l]; // row pointers
double A_val[A_ne]; // values
double A_dense[A_dense_ne]; // dense values
// column-wise storage
int A_by_col_row[A_nel]; // row indices,
int A_by_col_ptr[n+l]; // column pointers
double A_by_col_val[A_ne]; // values
double A_by_col_dense[A_dense_nel]; // dense values
double b[m]; // linear term in the objective
double x_1[n]; // variable lower bound
double x_u[n]; // variable upper bound
double x[n]; // variables
double z[n]; // dual variables
double c[m]; // residual
double g[n]; // gradient
// Set output storage
int x_stat[n]; // variable status
char st[3];
int i, 1, status;

x_1[0] = -1.0;
for(int 1 = 1; 1 < n; i++) x_1[i] = - INFINITY;
x_ul[0] = 1.0;
x_u[l] = INFINITY;
for(int 1 = 2; 1 < n; i++) x_ul[i] = 2.0;
// A= (I) and b = (1 * e
// (e"T) (n+ 1)
for(int 1 = 0; i < n; i++) b[i] = 1 + 1;
b[n] = n+l;
// A by rows
for(int i = 0; 1 < n; 1i++4)
{
A_ptr[i] =1 + 1;
A_row[i] =1 + 1; A_col[i] =1 + 1; A_val[i] = 1.0;
}
A_ptr[n] =n + 1;
for(int 1 = 0; 1 < n; 1i++)
{
A_row[n+i] = m; A_col[n+i] =1 + 1; A_vall[n+i] = 1.0;
}
A_ptr[m] = A_ne + 1;
1 =-1;
for(int i = 0; 1 < n; 1i++)

{
for(int j = 0; J < n; Jj++)
{

1=1+1;
it (1==3) {
A_dense[l] = 1.0;

for(int 3 = 0; J < n; Jj++)

C interfaces to GALAHAD BLLS GALAHAD 4.0

26 Example Documentation

1 =1+1;
A_dense[l] = 1.0;
}
// A by columns
1 =-1;
for(int j = 0; 3 < n; Jj++)

{

1 =1+1; A by col_ptr[j] =1+ 1;
A_by_col_row([l] = j + 1; A_by_col_val[l] = 1.0;
1=1+1;
A_by_col_row[l] = m; A_by_col_val[l] = 1.0;
}
A_by_col_ptr[n] = A_ne;
1 =-1;
for(int j = 0; J < n; Jj++)
{
for(int 1 = 0; 1 < n; i++)
1 =1+ 1;
it (i=3) {
A_by_col_dense[l] = 1.0;
}
e |
A_by_col_dense[l] = 0.0;
}
}
1 =1+ 1;
A_by_col_dense[l] = 1.0;
}
printf (" fortran sparse matrix indexing\n\n");

printf (" basic tests of blls storage formats\n\n");
for(int d=1; d <= 5; d++){
// Initialize BLLS
blls_initialize(&data, &control, &status);
// Set user-defined control options
control.f_indexing = true; // fortran sparse matrix indexing
// Start from 0
for(int i = 0; i < n; i++) x[i] = 0.0;
= 0; 1 < n; i++) z[i] = 0.0

7

// sparse co-ordinate storage
strepy (st, "CO");
blls_import (&control, &data, &status, n, m,
"coordinate", A_ne, A_row, A_col, NULL);
blls_solve_given_a(&data, &userdata, &status, n, m,
A_ne, A_val, b, x_1, x_u,
%X, z, ¢, g, X_stat, prec);
break;
e 2: // sparse by rows
strepy (st, "SR");
blls_import (&control, &data, &status, n, m,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr);
blls_solve_given_a(&data, &userdata, &status, n, m,
A_ne, A_val, b, x_1, x_u,
x, z, ¢, g, x_stat, prec);

break;
3: // dense by rows
strcpy(st, "DR");
blls_import (&control, &data, &status, n, m,
"dense_by_rows", A_dense_ne, NULL, NULL, NULL);
blls_solve_given_a(&data, &userdata, &status, n, m,
A_dense_ne, A_dense, b, x_1, x_u,
%X, z, ¢, g, xX_stat, prec);

break;
se 4: // sparse by columns
strepy (st, "SC");
blls_import (&control, &data, &status, n, m,
"sparse_by_columns", A_ne, A_by_col_row,
NULL, A_by_col_ptr);
blls_solve_given_a(&data, &userdata, &status, n, m,
A_ne, A _by_col_val, b, x_1, x_u,
%X, z, ¢, g, X_stat, prec);

break;
e 5: // dense by columns
strcpy (st, "DC");
blls_import (&control, &data, &status, n, m,
"dense_by_columns", A_dense_ne, NULL, NULL, NULL);

blls_solve_given_a(&data, &userdata, &status, n, m,

A_dense_ne, A_by_col_dense, b, x_1, x_u,

x, z, ¢, g, x_stat, prec);

cak;

}

blls_information(&data, &inform, &status);

if (inform.status == 0) {
printf ("$s:%61 iterations. Optimal objective value = $5.2f"
" status = %1i\n",

st, inform.iter, inform.obj, inform.status);

GALAHAD 4.0 C interfaces to GALAHAD BLLS

4.2 blistf.c 27

lelse{
printf("$s: BLLS_solve exit status = %1i\n", st, inform.status);

}
//printf ("x: ")

i
//for(int i = 0; 1 < n; i++) printf("$f ", x[i]);
//printf ("\n");
//printf ("gradient: ");

//for(int i = 0; i < n; i++) printf("$f ", gli]);
//printf ("\n");
// Delete internal workspace
blls_terminate(&data, &control, &inform);
}
printf("\n tests reverse—-communication options\n\n");
// reverse-communication input/output
int nm;
nm = max(n, m);
int eval_status, nz_v_start, nz_v_end, nz_p_end;
int nz_v[nm], nz_p[m], mask[m];
double v[nm], p[nm];
nz_p_end = 0;
// Initialize BLLS
blls_initialize(&data, &control, &status);
// Set user-defined control options
control.f_indexing = true; // fortran sparse matrix indexing
// Start from 0

for(int 1 = 0; 1 < n; i++) x[i] 0.0;

for(int i = 0; 1 < n; i++) z[i] = 0.0;

strcpy (st, "RC");

for(int 1 = 0; 1 < m; i++) mask[i] = 0;
blls_import_without_a(&control, &data, &status, n, m) ;
while (true){ // reverse-communication loop

blls_solve_reverse_a_prod(&data, &status, &eval_status, n, m, b,
x_1l, x_u, x, z, ¢, g, x_stat, v, p,
nz_v, &nz_v_start, &nz_v_end,
nz_p, nz_p_end);

if(status == 0){ // successful termination

break;

f(status < 0){ // error exit

ak;
if (status == 2){ // evaluate p = Av
=0.0;
int 1 = 0; 1 < n; i++){
i] = vI[il;
n] = pln] + v[il;
if(status == 3){ // evaluate p = A"Tv
int 1 = 0; i < n; i++) plil = v[i] + vIn];
els f(status == 4){ // evaluate p = Av for sparse v
p[n]=0.0;
£ int 1 = 0; 1 < n; i++) p[i] = 0.0;
int 1 = nz_v_start - 1; 1 < nz_v_end; 1++){
i = nz_v[1l]-1;
plil = vI[il;
pln] = pln] + vI[i];
}
}else 1f(status == 5){ // evaluate p = sparse Av for sparse Vv
nz_p_end = 0;
for(int 1 = nz_v_start - 1; 1 < nz_v_end; 1++){
i = nz_v[1l]-1;
if (mask[i] == 0){
mask[i] = 1;
nz_p[nz_p_end] = i+1;
nz_p_end = nz_p_end + 1;
pli] = vI[i];
}
it (mask[n] == 0){
mask[n] = 1;
nz_p[nz_p_end] = m;
nz_p_end = nz_p_end + 1;
pln] = vI[il;
telse(
plnl] pln] + vI[il;
}
int 1 = 0; 1 < nz_p_end; 1l++) mask[nz_p[l]] = 0;
f(status == 6){ // evaluate p = sparse A" Tv
int 1 = nz_v_start - 1; 1 < nz_v_end; 1++){
i =nz_v[1l]-1;
pli] = v[i] + v[n];
f(status == 7){ // evaluate p = P*{-}v

r(int 1 = 0; i < n; i++) pli]
}else(
printf (" the value %1i of status should not occur\n", status);

b

userdata.scale * vI[i];

SRy

}

eval_status = 0;

C interfaces to GALAHAD BLLS GALAHAD 4.0

28

Example Documentation

}

// Record solution information

blls_information(&data,

// Print solution details

if(inform.status) {
printf ("%$s:%$61 iterations.

" status = %1i\n",
st, inform.iter,

telsef
printf ("$s:

}

//printf ("x:

")

&inform,

Optimal objective value =
inform.obj,

BLLS_solve exit status =

&status);

$5.2f"
inform.status);

%1i\n", st, inform.status);

//for(int i = 0; i < n; i++) printf("$f ", x[i]);
//printf ("\n");

//printf ("gradient: ");

//for(int 1 = 0; 1 < n; i++) printf("$£f ", gl[il);

//printf("\n");
// Delete internal workspace
blls_terminate(&data, &control,
}
// Apply preconditioner
int prec(int n, const double vI[],
struct userdata_type *myuserdata =
double scale = myuserdata->scale;
for(int i = 0; 1 < n; i++) p[i] =
return 0;

&inform

double pl],

const void =*userdata) {

(struct userdata_type *) userdata;

scale = vI[i];

GALAHAD 4.0

C interfaces to GALAHAD BLLS

Index

blls_control_type, 7
blls_import
galahad_blls.h, 11
blls_import_without_a
galahad_blls.h, 12
blls_inform_type, 9
blls_information
galahad_blls.h, 19
blls_initialize
galahad_blls.h, 10
blls_read_specfile
galahad_blls.h, 10
blls_reset_control
galahad_blls.h, 13
blls_solve_given_a
galahad_blls.h, 13
blls_solve_reverse_a_prod
galahad_blls.h, 16
blls_terminate
galahad_blls.h, 20
blls_time_type, 9

galahad_blls.h, 7
blls_import, 11
blls_import_without_a, 12
blls_information, 19
blls_initialize, 10
blls_read_specfile, 10
blls_reset_control, 13
blls_solve_given_a, 13
blls_solve_reverse_a_prod, 16
blls_terminate, 20

	1 GALAHAD C package blls
	1.1 Introduction
	1.1.1 Purpose
	1.1.2 Authors
	1.1.3 Originally released
	1.1.4 Terminology
	1.1.5 Method
	1.1.6 Reference
	1.1.7 Call order
	1.1.8 Unsymmetric matrix storage formats
	1.1.8.1 Dense row storage format
	1.1.8.2 Dense column storage format
	1.1.8.3 Sparse co-ordinate storage format
	1.1.8.4 Sparse row-wise storage format
	1.1.8.5 Sparse column-wise storage format

	2 File Index
	2.1 File List

	3 File Documentation
	3.1 galahad_blls.h File Reference
	3.1.1 Data Structure Documentation
	3.1.1.1 struct blls_control_type
	3.1.1.2 struct blls_time_type
	3.1.1.3 struct blls_inform_type

	3.1.2 Function Documentation
	3.1.2.1 blls_initialize()
	3.1.2.2 blls_read_specfile()
	3.1.2.3 blls_import()
	3.1.2.4 blls_import_without_a()
	3.1.2.5 blls_reset_control()
	3.1.2.6 blls_solve_given_a()
	3.1.2.7 blls_solve_reverse_a_prod()
	3.1.2.8 blls_information()
	3.1.2.9 blls_terminate()

	4 Example Documentation
	4.1 bllst.c
	4.2 bllstf.c

	Index

