C interfaces to GALAHAD BGO

Jari Fowkes and Nick Gould
STFC Rutherford Appleton Laboratory
Sat Mar 26 2022

1 GALAHAD C package bgo 1
1.1 Introduction L e e e e e 1
111 PUrPOSE o e e 1
1. 1.2Authors o 1
1.1.3 Originally released 1
1.1.4Terminology o e 1
11.5Method e 2
1.1.6 References L 2
1.2 Callorder e 3
1.3 Symmetric matrix storage formats L 3
1.3.1 Dense storage format 3
1.3.2 Sparse co-ordinate storage format L L L 4
1.3.3 Sparse row-wise storage format L 4
2 File Index

21 File List e
3 File Documentation 7
3.1 galahad_bgo.h File Reference 7
3.1.1 Data Structure Documentation L 8
3.1.1.1 struct bgo_control_type 8
3.1.1.2structbgo_time_type L 9
3.1.1.3 struct bgo_inform_type 9
3.1.2 Function Documentation 10
3.1.2.1 bgo_initialize() 10
3.1.22Dbgo_read specfile() 10
3.1.23bgo_import() 10
3.1.24 bgo_reset_control() 12
3.1.25Dbgo_solve_with_mat() 12
3.1.2.6 bgo_solve_without_ mat() 14
3.1.2.7 bgo_solve_reverse_with_ mat() o 17
3.1.2.8 bgo_solve_reverse_without_ mat() L. 21
3.1.29bgo_information() 24
3.1.2.10bgo_terminate() 25
4 Example Documentation 27
4.1DgOt.C . . e e e 27
4.20g0th.C . . . e e e 34
Index 43

C interfaces to GALAHAD BGO

GALAHAD 4.0

Chapter 1

GALAHAD C package bgo

1.1 Introduction

1.1.1 Purpose

The bgo package uses a multi-start trust-region method to find an approximation to the global minimizer
of a differentiable objective function f(z) of n variables z, subject to simple bounds 2! < x < 2" on the
variables. Here, any of the components of the vectors of bounds 2! and z* may be infinite. The method offers the
choice of direct and iterative solution of the key trust-region subproblems, and is suitable for large problems. First
derivatives are required, and if second derivatives can be calculated, they will be exploited—if the product of second
derivatives with a vector may be found but not the derivatives themselves, that may also be exploited.

The package offers both random multi-start and local-minimize-and probe methods to try to locate the global mini-
mizer. There are no theoretical guarantees unless the sampling is huge, and realistically the success of the methods
decreases as the dimension and nonconvexity increase.

1.1.2 Authors

N. I. M. Gould, STFC-Rutherford Appleton Laboratory, England.

C interface, additionally J. Fowkes, STFC-Rutherford Appleton Laboratory.

1.1.3 Originally released

July 2016, C interface August 2021.

1.1.4 Terminology

The gradient V. f(x) of f(x) is the vector whose i-th component is 0f(x)/Jz;. The Hessian V ., f (x) of f(x)
is the symmetric matrix whose i, j-th entry is 8 f(z)/0x;0z;. The Hessian is sparse if a significant and useful
proportion of the entries are universally zero.

2 GALAHAD C package bgo

1.1.5 Method

A choice of two methods is available. In the first, local-minimization-and-probe, approach, local minimization and
univariate global minimization are intermixed. Given a current champion :cf, a local minimizer xj, of f(x) within
the feasible box z! < z < z is found using the GALAHAD package trb. Thereafter m random directions p are
generated, and univariate local minimizer of f (x4 ap) as a function of the scalar « along each p within the interval
[, "], where a¥ and a* are the smallest and largest « for which 2! < x;, + ap < 2", is performed using the
GALAHAD package ugo. The point 2, + ap that gives the smallest value of f is then selected as the new champion

s
TR

The random directions p are chosen in one of three ways. The simplest is to select the components as

[1,1] if 2l <ap,; < a?

p; = pseudo random € [01] if zp,; =a!
[-1,0] if zp; =2}
foreach 1 <7 < n. An alternative is to pick p by partitioning each dimension of the feasible “‘*hypercube” box into m
equal segments, and then selecting sub-boxes randomly within this hypercube using GALAHAD's Latin hypercube
sampling package, lhs. Each components of p is then selected in its sub-box, either uniformly or pseudo randomly.

The other, random-multi-start, method provided selects m starting points at random, either componentwise pseudo
randomly in the feasible box, or by partitioning each component into m equal segments, assigning each to a sub-
box using Latin hypercube sampling, and finally choosing the values either uniformly or pseudo randomly. Local
minimizers within the feasible box are then computed by the GALAHAD package trb, and the best is assigned as
the current champion. This process is then repeated until evaluation limits are achieved.

If n = 1, the GALAHAD package UGO is called directly.

We reiterate that there are no theoretical guarantees unless the sampling is huge, and realistically the success
of the methods decreases as the dimension and nonconvexity increase. Thus the methods used should best be
viewed as heuristics.

1.1.6 References

The generic bound-constrained trust-region method is described in detail in
A. R. Conn, N. I. M. Gould and Ph. L. Toint (2000), Trust-region methods. SIAM/MPS Series on Optimization,
the univariate global minimization method employed is an extension of that due to

D. Leraand Ya. D. Sergeyev (2013), “‘Acceleration of univariate global optimization algorithms working with Lipschitz
functions and Lipschitz first derivatives” SIAM J. Optimization Vol. 23, No. 1, pp. 508-529,

while the Latin-hypercube sampling method employed is that of

B. Beachkofski and R. Grandhi (2002). “‘Improved Distributed Hypercube Sampling”, 43rd AIAA structures, struc-
tural dynamics, and materials conference, pp. 2002-1274.

GALAHAD 4.0 C interfaces to GALAHAD BGO

1.2 Call order 3

1.2 Call order

To solve a given problem, functions from the bgo package must be called in the following order:

* bgo_initialize - provide default control parameters and set up initial data structures

» bgo_read_specfile (optional) - override control values by reading replacement values from a file

» bgo_import - set up problem data structures and fixed values

» bgo_reset_control (optional) - possibly change control parameters if a sequence of problems are being solved

+ solve the problem by calling one of

bgo_solve_with_mat - solve using function calls to evaluate function, gradient and Hessian values

bgo_solve_without_mat - solve using function calls to evaluate function and gradient values and
Hessian-vector products

bgo_solve_reverse_with_mat - solve returning to the calling program to obtain function, gradient and
Hessian values, or

bgo_solve_reverse_without_mat - solve returning to the calling prorgram to obtain function and gradient
values and Hessian-vector products

» bgo_information (optional) - recover information about the solution and solution process

* bgo_terminate - deallocate data structures

See Section 4.1 for examples of use.

1.3 Symmetric matrix storage formats

The symmetric n by n matrix H = V,,f may be presented and stored in a variety of formats. But crucially
symmetry is exploited by only storing values from the lower triangular part (i.e, those entries that lie on or below the
leading diagonal).

Both C-style (0 based) and fortran-style (1-based) indexing is allowed. Choose control.f_indexing as
false for C style and t rue for fortran style; the discussion below presumes C style, but add 1 to indices for the
corresponding fortran version.

Wrappers will automatically convert between 0-based (C) and 1-based (fortran) array indexing, so may be used
transparently from C. This conversion involves both time and memory overheads that may be avoided by supplying
data that is already stored using 1-based indexing.

1.3.1 Dense storage format

The matrix H is stored as a compact dense matrix by rows, that is, the values of the entries of each row in turn are
stored in order within an appropriate real one-dimensional array. Since H is symmetric, only the lower triangular
part (that is the part H;; for 0 < j < i < n — 1) need be held. In this case the lower triangle should be stored by
rows, that is component * /2 + j of the storage array H_val will hold the value H;; (and, by symmetry, H ;) for
0<j<i<n—1.

C interfaces to GALAHAD BGO GALAHAD 4.0

4 GALAHAD C package bgo

1.3.2 Sparse co-ordinate storage format

Only the nonzero entries of the matrices are stored. For the [-th entry, 0 < [< ne — 1, of H, its row index i, column
index j and value H;;, 0 < j < ¢ < n — 1, are stored as the [-th components of the integer arrays H_row and
H_col and real array H_val, respectively, while the number of nonzeros is recorded as H_ne = ne. Note that only
the entries in the lower triangle should be stored.

1.3.3 Sparse row-wise storage format

Again only the nonzero entries are stored, but this time they are ordered so that those in row i appear directly before
those in row i+1. For the i-th row of H the i-th component of the integer array H_ptr holds the position of the first
entry in this row, while H_ptr(n) holds the total number of entries plus one. The column indices j, 0 < 5 < 4, and
values H;; of the entries in the i-th row are stored in components | = H_ptr(i), ..., H_ptr(i+1)-1 of the integer array
H_col, and real array H_val, respectively. Note that as before only the entries in the lower triangle should be stored.
For sparse matrices, this scheme almost always requires less storage than its predecessor.

GALAHAD 4.0 C interfaces to GALAHAD BGO

Chapter 2

File Index

2.1 File List

Here is a list of all files with brief descriptions:

galahad_bgo.h

6 File Index

GALAHAD 4.0 C interfaces to GALAHAD BGO

Chapter 3

File Documentation

3.1 galahad_bgo.h File Reference

finclude <stdbool.h>

#include "galahad_precision.h"
#include "galahad_trb.h"
#include "galahad_ugo.h"
#include "galahad_lhs.h"

Data Structures

« struct bgo_control_type
« struct bgo_time_type
« struct bgo_inform_type

Functions

+ void bgo_initialize (void xxdata, struct bgo_control_type xcontrol, int xstatus)

« void bgo_read_specfile (struct bgo_control_type xcontrol, const char specfile[])

+ void bgo_import (struct bgo_control_type *control, void xxdata, int xstatus, int n, const real_wp_ x_I[], const
real_wp_ x_u[], const char H_type[], int ne, const int H_row[], const int H_col[], const int H_ptr[])

« void bgo_reset_control (struct bgo_control_type xcontrol, void *xdata, int xstatus)

+ void bgo_solve_with_mat (void *xdata, void xuserdata, int xstatus, int n, real_wp_ x[], real_wp_ g[], int ne,
int(xeval_f)(int, const real_wp_[], real_wp_ *, const void x*), int(xeval_g)(int, const real_wp_[], real_wp_+«
[1, const void x), int(xeval_h)(int, int, const real_wp_[], real_wp_[], const void x), int(xeval_hprod)(int, const
real_wp_[], real_wp_[], const real_wp_[], bool, const void *), int(xeval_prec)(int, const real_wp_{[], real_«
wp_[], const real_wp_[], const void x))

+ void bgo_solve_without_mat (void xxdata, void xuserdata, int xstatus, int n, real_wp_ x[], real_wp_ g[],
int(xeval_f)(int, const real_wp_[], real_wp_ *, const void x), int(xeval_g)(int, const real_wp_[], real_wp_+«
[1, const void), int(xeval_hprod)(int, const real_wp_[], real_wp_[], const real_wp_[], bool, const void x),
int(xeval_shprod)(int, const real_wp_[], int, const int[], const real_wp_[], int *, int[], real_wp_[], bool, const
void x), int(xeval_prec)(int, const real_wp_[], real_wp_[], const real_wp_[], const void x))

» void bgo_solve_reverse_with_mat (void xxdata, int xstatus, int xeval_status, int n, real_wp_ x[], real_wp__f,
real_wp_ g[], int ne, real_wp_ H_val[], const real_wp_ u[], real_wp_ v[])

« void bgo_solve_reverse_without_mat (void *xdata, int xstatus, int xeval_status, int n, real_wp_ x[], real«—
wp f, real_wp_ g[], real_wp_ u[], real_wp_ Vv[], int index_nz_v[], int *nnz_v, const int index_nz_u[], int
nnz_u)

+ void bgo_information (void *xdata, struct bgo_inform_type xinform, int xstatus)

+ void bgo_terminate (void xxdata, struct bgo_control_type *control, struct bgo_inform_type xinform)

File Documentation

3.1.1 Data Structure Documentation

3.1.1.1 struct bgo_control_type

Examples

bgot.c, and bgotf.c.

Data Fields
bool | f_indexing use C or Fortran sparse matrix indexing
int | error error and warning diagnostics occur on stream error
int | out general output occurs on stream out
int | print_level the level of output required. Possible values are:
« < 0 no output,
* 1 a one-line summary for every improvement
« 2 a summary of each iteration
+ > 3increasingly verbose (debugging) output
int | attempts_max the maximum number of random searches from the
best point found so far
int | max_evals the maximum number of function evaluations made
int | sampling_strategy sampling strategy used. Possible values are
* 1 uniformly spread
+ 2 Latin hypercube sampling
+ 3 niformly spread within a Latin hypercube
int | hypercube_discretization | hyper-cube discretization (for sampling stategies 2 and
3)
int | alive_unit removal of the file alive_file from unit alive_unit
terminates execution
char | alive_file[31] see alive_unit
real_wp_ | infinity any bound larger than infinity in modulus will be
regarded as infinite
real_wp_ | obj_unbounded the smallest value the objective function may take
before the problem is marked as unbounded
real_wp_ | cpu_time_limit the maximum CPU time allowed (-ve means infinite)
real_wp_ | clock_time_limit the maximum elapsed clock time allowed (-ve means
infinite)
bool | random_multistart perform random-multistart as opposed to local minimize
and probe
bool | hessian_available is the Hessian matrix of second derivatives available or
is access only via matrix-vector products?
bool | space_critical if .space_critical true, every effort will be made to use
as little space as possible. This may result in longer
computation time
bool | deallocate error fatal if .deallocate_error_fatal is true, any array/pointer
deallocation error will terminate execution. Otherwise,
computation will continue
GALAHAD 4.0 C interfaces to GALAHAD BGO

3.1 galahad_bgo.h File Reference

Data Fields
char | prefix[31] all output lines will be prefixed by
prefix(2:LEN(TRIM(.prefix))-1) where .prefix contains
the required string enclosed in quotes, e.g. "string" or
'string’
struct trb_control_type | trb_control control parameters for TRB
struct ugo_control_type | ugo_control control parameters for UGO
struct Ihs_control_type | lhs_control control parameters for LHS

3.1.1.2 struct bgo_time_type

Data Fields
real_sp_ | total the total CPU time spent in the package
real_sp_ | univariate_global the CPU time spent performing univariate global optimization
real_sp_ | multivariate_local the CPU time spent performing multivariate local optimization
real_wp_ | clock_total the total clock time spent in the package
real_wp_ | clock_univariate_global | the clock time spent performing univariate global optimization
real_wp_ | clock_multivariate_local | the clock time spent performing multivariate local optimization

3.1.1.3 struct bgo_inform_type

Examples

bgot.c, and bgotf.c.

Data Fields
int | status return status. See BGO_solve for details
int | alloc_status the status of the last attempted allocation/deallocation
char | bad_alloc[81] | the name of the array for which an allocation/deallocation error
ocurred
int | f_eval the total number of evaluations of the objection function
int | g_eval the total number of evaluations of the gradient of the objection
function
int | h_eval the total number of evaluations of the Hessian of the objection
function
real_wp_ | obj the value of the objective function at the best estimate of the
solution determined by BGO_solve
real_wp_ | norm_pg the norm of the projected gradient of the objective function at the
best estimate of the solution determined by BGO_solve
struct bgo_time_type | time timings (see above)
struct trb_inform_type | trb_inform inform parameters for TRB
struct ugo_inform_type | ugo_inform inform parameters for UGO
struct Ihs_inform_type | Ihs_inform inform parameters for LHS

C interfaces to GALAHAD BGO

GALAHAD 4.0

10 File Documentation

3.1.2 Function Documentation

3.1.2.1 bgo_initialize()

void bgo_initialize (
void *x data,
struct bgo_control_type x control,

int * status)

Set default control values and initialize private data

Parameters
in,out | data holds private internal data
out control | is a struct containing control information (see bgo_control_type)
out status | is a scalar variable of type int, that gives the exit status from the package. Possible
values are (currently):
* 0. The import was succesful.
Examples

bgot.c, and bgotf.c.

3.1.2.2 bgo_read_specfile()

void bgo_read_specfile (
struct bgo_control_type x control,

const char specfile[]

Read the content of a specification file, and assign values associated with given keywords to the corresponding
control parameters. By default, the spcification file will be named RUNBGO.SPC and lie in the current directory.
Refer to Table 2.1 in the fortran documentation provided in $§GALAHAD/doc/bgo.pdf for a list of keywords that may
be set.

Parameters

in, out | control | is a struct containing control information (see bgo_control_type)

in specfile | is a character string containing the name of the specification file

3.1.2.3 bgo_import()

void bgo_import (

GALAHAD 4.0 C interfaces to GALAHAD BGO

3.1 galahad_bgo.h File Reference 11

struct bgo_control_type x control,

void % data,

int % status,

int n,

const real_wp_ x_1[],

const real_wp_ x_ul],

const char H_type[],

int ne,

const int H_row[],

const int H_col[],

const int H_ptr[])

Import problem data into internal storage prior to solution.

Parameters

in

control

is a struct whose members provide control paramters for the remaining prcedures (see
bgo_control_type)

in, out

data

holds private internal data

in, out

status

is a scalar variable of type int, that gives the exit status from the package. Possible
values are:

» 1. The import was succesful, and the package is ready for the solve phase

» -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

» -2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

+ -3. The restriction n > 0 or requirement that type contains its relevant string
'dense’, 'coordinate’, 'sparse_by_rows', 'diagonal’ or 'absent' has been violated.

in

is a scalar variable of type int, that holds the number of variables.

in

x|

is a one-dimensional array of size n and type double, that holds the values ! of the
lower bounds on the optimization variables z. The j-th component of x_|I,
j=0,...,n—1,contains z’.

in

is a one-dimensional array of size n and type double, that holds the values z* of the
upper bounds on the optimization variables x. The j-th component of x_u,
J=0,...,n— 1, contains z7.

in

H_type

is a one-dimensional array of type char that specifies the symmetric storage scheme
used for the Hessian. It should be one of 'coordinate’, 'sparse_by_rows', 'dense’,
‘diagonal’ or 'absent', the latter if access to the Hessian is via matrix-vector products;
lower or upper case variants are allowed.

in

ne

is a scalar variable of type int, that holds the number of entries in the lower triangular
part of H in the sparse co-ordinate storage scheme. It need not be set for any of the
other three schemes.

in

H_row

is a one-dimensional array of size ne and type int, that holds the row indices of the
lower triangular part of H in the sparse co-ordinate storage scheme. It need not be set
for any of the other three schemes, and in this case can be NULL

in

H_col

is a one-dimensional array of size ne and type int, that holds the column indices of the
lower triangular part of H in either the sparse co-ordinate, or the sparse row-wise
storage scheme. It need not be set when the dense or diagonal storage schemes are
used, and in this case can be NULL

C interfaces to GALAHAD BGO

GALAHAD 4.0

12 File Documentation

Parameters
in H_ptr is a one-dimensional array of size n+1 and type int, that holds the starting position of
each row of the lower triangular part of H, as well as the total number of entries plus
one, in the sparse row-wise storage scheme. It need not be set when the other
schemes are used, and in this case can be NULL
Examples

bgot.c, and bgotf.c.

3.1.2.4 bgo_reset_control()

void bgo_reset_control (
struct bgo_control_type x control,
void *x data,

int * status)

Reset control parameters after import if required.

Parameters
in control | is a struct whose members provide control paramters for the remaining prcedures (see
bgo_control_type)
in, out | data holds private internal data

in,out | status | is a scalar variable of type int, that gives the exit status from the package. Possible
values are:

« 1. The import was succesful, and the package is ready for the solve phase

3.1.2.5 bgo_solve_with_mat()

void bgo_solve_with_mat (
void ** data,
void % userdata,
int % status,
int n,
real_wp_ x[],

real_wp_ gl],

int ne,

int () (int, const real wp_[], real_wp_ *, const void x*) eval f,

int (%) (int, const real_wp_[], real_wp_[], const void *) eval_ g,

int (%) (int, int, const real_wp_[], real_wp_[], const void *) eval_h,

int (%) (int, const real_wp_[], real_wp_[], const real wp_[], bool, const void x)
eval_hprod,

int (%) (int, const real wp_[], real_wp_[], const real wp_[], const void *) eval <

prec)

GALAHAD 4.0 C interfaces to GALAHAD BGO

3.1 galahad_bgo.h File Reference 13

Find an approximation to the global minimizer of a given function subject to simple bounds on the variables using a
multistart trust-region method.

This call is for the case where H = V. f(z) is provided specifically, and all function/derivative information is
available by function calls.

Parameters

in,out | data holds private internal data

in userdata | is a structure that allows data to be passed into the function and derivative evaluation
programs.

in, out | status is a scalar variable of type int, that gives the entry and exit status from the package.
On initial entry, status must be set to 1.
Possible exit are:

* 0. The run was succesful

+ -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

» -2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

 -3. The restriction n > 0 or requirement that type contains its relevant string
'dense’, 'coordinate’, 'sparse_by_rows', 'diagonal’ or 'absent' has been violated.

+ -7. The objective function appears to be unbounded from below

» -9. The analysis phase of the factorization failed; the return status from the
factorization package is given in the component inform.factor_status

» -10. The factorization failed; the return status from the factorization package is
given in the component inform.factor_status.

» -11. The solution of a set of linear equations using factors from the
factorization package failed; the return status from the factorization package is
given in the component inform.factor_status.

» -16. The problem is so ill-conditioned that further progress is impossible.

+ -18. Too many iterations have been performed. This may happen if
control.maxit is too small, but may also be symptomatic of a badly scaled
problem.

» -19. The CPU time limit has been reached. This may happen if
control.cpu_time_limit is too small, but may also be symptomatic of a badly
scaled problem.

» -40. The user has forced termination of solver by removing the file named
control.alive_file from unit unit control.alive_unit.

in n is a scalar variable of type int, that holds the number of variables

in,out | x is a one-dimensional array of size n and type double, that holds the values z of the
optimization variables. The j-th component of x, j =0, ... , n-1, contains z;.

in,out | g is a one-dimensional array of size n and type double, that holds the gradient
g = V. f(x) of the objective function. The j-th component of g, =0, ... , n-1,
contains g;.

C interfaces to GALAHAD BGO GALAHAD 4.0

14

File Documentation

Parameters

in

ne

is a scalar variable of type int, that holds the number of entries in the lower triangular
part of the Hessian matrix H.

eval f

is a user-supplied function that must have the following signature:
int eval_f(The

value of the objective function f(x) evaluated at x= 2 must be assigned to f, and the
function return value set to 0. If the evaluation is impossible at x, return should be set

to a nonzero value. Data may be passed into eval_f via the structure userdata.

int n, const double x[], double xf, const void =*userdata)

eval g

is a user-supplied function that must have the following signature:
int eval_g(int n, const double x[], The
components of the gradient ¢ = V, f () of the objective function evaluated at x= x
must be assigned to g, and the function return value set to 0. If the evaluation is
impossible at x, return should be set to a nonzero value. Data may be passed into

eval_g viathe structure userdata.

double g[], const void suserdata)

eval_h

is a user-supplied function that must have the following signature:

int eval_h(int n, int ne, const double x[], double hl], const void *userdata)
The nonzeros of the Hessian H = V, f(z) of the objective function evaluated at x=
2 must be assigned to h in the same order as presented to bgo_import, and the

function return value set to 0. If the evaluation is impossible at x, return should be set
to a nonzero value. Data may be passed into eval_h via the structure userdata.

eval_prec

is an optional user-supplied function that may be NULL. If non-NULL, it must have
the following signature:

int eval_prec(int n, const double x[],
void *userdata)

The product u = P(x)v of the user's preconditioner P(z) evaluated at = with the
vector v = v, the result u must be retured in u, and the function return value set to 0.
If the evaluation is impossible at x, return should be set to a nonzero value. Data may
be passed into eval_prec via the structure userdata.

double u[], const double vI[], const

Examples

bgot.c, and bgotf.c.

3.1.2.6 bgo_solve_without_mat()

void bgo_solve_without_mat (
void ** data,
void x userdata,
int % status,
int n,
real_wp_ x[],

real_wp_ gl],

int () (int, const real_wp_[], real_wp_ %, const void %) eval_ f,

int () (int, const real_wp_[]1, real_wp_[], const void %) eval_g,

int (%) (int, const real wp_[], real_wp_[], const real_wp_[], bool, const void *)
eval_ hprod,

int (x) (int, const real_wp_[], int, const int[], const real_wp_[], int %, int[],
real_wp_[], bool, const void *) eval_shprod,

int (%) (int, const real wp_[], real_wp_[], const real wp_[], const void *) eval <«
prec)

Find an approximation to the global minimizer of a given function subject to simple bounds on the variables using a

multistart trust-region method.

GALAHAD 4.0

C interfaces to GALAHAD BGO

3.1 galahad_bgo.h File Reference 15

This call is for the case where access to H = V. f(z) is provided by Hessian-vector products, and all func-
tion/derivative information is available by function calls.

C interfaces to GALAHAD BGO GALAHAD 4.0

16

File Documentation

Parameters

in, out

data

holds private internal data

in

userdata

is a structure that allows data to be passed into the function and derivative
evaluation programs.

in, out

status

is a scalar variable of type int, that gives the entry and exit status from the
package.

On initial entry, status must be set to 1.

Possible exit are:

« 0. The run was succesful

» -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status
and inform.bad_alloc respectively.

+ -2. A deallocation error occurred. A message indicating the offending array
is written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status
and inform.bad_alloc respectively.

» -3. The restriction n > 0 or requirement that type contains its relevant string
'dense’, 'coordinate’, 'sparse_by_rows', 'diagonal’ or 'absent' has been
violated.

» -7. The objective function appears to be unbounded from below

» -9. The analysis phase of the factorization failed; the return status from the
factorization package is given in the component inform.factor_status

» -10. The factorization failed; the return status from the factorization package
is given in the component inform.factor_status.

» -11. The solution of a set of linear equations using factors from the
factorization package failed; the return status from the factorization package
is given in the component inform.factor_status.

» -16. The problem is so ill-conditioned that further progress is impossible.

» -18. Too many iterations have been performed. This may happen if
control.maxit is too small, but may also be symptomatic of a badly scaled
problem.

» -19. The CPU time limit has been reached. This may happen if
control.cpu_time_limit is too small, but may also be symptomatic of a badly
scaled problem.

* -40. The user has forced termination of solver by removing the file named
control.alive_file from unit unit control.alive_unit.

in

is a scalar variable of type int, that holds the number of variables

in, out

is a one-dimensional array of size n and type double, that holds the values z of the
optimization variables. The j-th component of x, j = 0, ... , n-1, contains ;.

in, out

is a one-dimensional array of size n and type double, that holds the gradient
g = V. f(x) of the objective function. The j-th component of g,j =0, ... , n-1,
contains g;.

GALAHAD 4.0

C interfaces to GALAHAD BGO

3.1 galahad_bgo.h File Reference 17

Parameters
eval_f is a user-supplied function that must have the following signature:
int eval_f(int n, const double x[], double %f, const void xuserdata) The
value of the objective function f(x) evaluated at x= = must be assigned to f, and
the function return value set to 0. If the evaluation is impossible at x, return should
be set to a nonzero value. Data may be passed into eval_ f via the structure
userdata.
eval g is a user-supplied function that must have the following signature:
int eval_g(int n, const double x[], double g[], const void *userdata) The
components of the gradient g = V. f(x) of the objective function evaluated at x=
x must be assigned to g, and the function return value set to 0. If the evaluation is
impossible at x, return should be set to a nonzero value. Data may be passed into
eval_g via the structure userdata.
eval_hprod | is a user-supplied function that must have the following signature:
int eval_hprod(int n, const double x[], double u[], const double v[], bool
got_h, const void xuserdata)
The sum u + V. f (z)v of the product of the Hessian V. f () of the objective
function evaluated at x= x with the vector v= v and the vector $ u© must be
returned in u, and the function return value set to 0. If the evaluation is impossible
at x, return should be set to a nonzero value. The Hessian has already been
evaluated or used at x if got_h is true. Data may be passed into eval_hprod via
the structure userdata.
eval_shprod | is a user-supplied function that must have the following signature:
int eval_shprod(int n, const double x[], int nnz_v, const int
index_nz_v([], const double vI[],
int *nnz_u, int index_nz_u[], double ull,
bool got_h, const void xuserdata)
The product u = V., f(z)v of the Hessian V. f(x) of the objective function
evaluated at x with the sparse vector v= v must be returned in u, and the function
return value set to 0. Only the components index_nz_v[0:nnz_v-1] of v are
nonzero, and the remaining components may not have been be set. On exit, the
user must indicate the nnz_u indices of u that are nonzero in
index_nz_u[0:nnz_u-1], and only these components of u need be set. If the
evaluation is impossible at x, return should be set to a nonzero value. The Hessian
has already been evaluated or used at x if got_h is true. Data may be passed into
eval_prec viathe structure userdata.
eval_prec is an optional user-supplied function that may be NULL. If non-NULL, it must have
the following signature:
int eval_prec(int n, const double x[], double u[], const double v[], const
void xuserdata)
The product u = P(x)v of the user's preconditioner P(x) evaluated at = with the
vector v = v, the result © must be retured in u, and the function return value set to
0. If the evaluation is impossible at x, return should be set to a nonzero value.
Data may be passed into eval_prec via the structure userdata.
Examples

bgot.c, and bgotf.c.

3.1.2.7 bgo_solve_reverse_with_mat()

void bgo_solve_reverse_with_mat (

void x*x data,

int % status,

C interfaces to GALAHAD BGO

GALAHAD 4.0

18 File Documentation

int * eval_status,
int n,

real_wp_ x[],
real_wp_ f,
real_wp_ g/],

int ne,

real_wp_ H val[],
const real_wp_ ul],

real_wp_ v[])

Find an approximation to the global minimizer of a given function subject to simple bounds on the variables using a
multistart trust-region method.

This call is for the case where H = V. f(z) is provided specifically, but function/derivative information is only
available by returning to the calling procedure

Parameters

in,out | data holds private internal data

GALAHAD 4.0 C interfaces to GALAHAD BGO

3.1 galahad_bgo.h File Reference 19

Parameters

in, out

status

is a scalar variable of type int, that gives the entry and exit status from the package.

On initial entry, status must be set to 1.
Possible exit are:

* 0. The run was succesful

» -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status
and inform.bad_alloc respectively.

» -2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status
and inform.bad_alloc respectively.

+ -3. The restriction n > 0 or requirement that type contains its relevant string
'dense’, 'coordinate’, 'sparse_by_rows', 'diagonal’ or 'absent' has been
violated.

+ -7. The objective function appears to be unbounded from below

» -9. The analysis phase of the factorization failed; the return status from the
factorization package is given in the component inform.factor_status

» -10. The factorization failed; the return status from the factorization package
is given in the component inform.factor_status.

» -11. The solution of a set of linear equations using factors from the
factorization package failed; the return status from the factorization package
is given in the component inform.factor_status.

+ -16. The problem is so ill-conditioned that further progress is impossible.

+ -18. Too many iterations have been performed. This may happen if
control.maxit is too small, but may also be symptomatic of a badly scaled
problem.

+ -19. The CPU time limit has been reached. This may happen if
control.cpu_time_limit is too small, but may also be symptomatic of a badly
scaled problem.

» -40. The user has forced termination of solver by removing the file named
control.alive_file from unit unit control.alive_unit.

C interfaces to GALAHAD BGO

GALAHAD 4.0

20

File Documentation

Parameters

status

(continued)

« 2. The user should compute the objective function value f(x) at the point z
indicated in x and then re-enter the function. The required value should be
set in f, and eval_status should be set to 0. If the user is unable to evaluate
f(x)— for instance, if the function is undefined at x— the user need not set
f, but should then set eval_status to a non-zero value.

« 3. The user should compute the gradient of the objective function V. f(z) at
the point = indicated in x and then re-enter the function. The value of the i-th
component of the g radient should be set in g[i], fori =0, ..., n-1 and
eval_status should be set to 0. If the user is unable to evaluate a component
of V. f(x) — for instance if a component of the gradient is undefined at x
-the user need not set g, but should then set eval_status to a non-zero value.

* 4. The user should compute the Hessian of the objective function V. f ()
at the point x indicated in = and then re-enter the function. The value I-th
component of the Hessian stored according to the scheme input in the
remainder of H should be setin H_val[l], for | = 0, ..., ne-1 and eval_status
should be set to 0. If the user is unable to evaluate a component of V. f ()
— for instance, if a component of the Hessian is undefined at x — the user
need not set H_val, but should then set eval_status to a non-zero value.

+ 5. The user should compute the product V... f (z)v of the Hessian of the
objective function V. f () at the point z indicated in x with the vector v,
add the result to the vector u and then re-enter the function. The vectors u
and v are given in u and v respectively, the resulting vector u + V. f (z)v
should be set in u and eval_status should be set to 0. If the user is unable to
evaluate the product— for instance, if a component of the Hessian is
undefined at x — the user need not alter u, but should then set eval_status
to a non-zero value.

+ 6. The user should compute the product « = P(x)v of their preconditioner
P(z) at the point x indicated in 2 with the vector v and then re-enter the
function. The vector v is given in v, the resulting vector « = P(x)v should be
set in u and eval_status should be set to 0. If the user is unable to evaluate
the product— for instance, if a component of the preconditioner is undefined
at x — the user need not set u, but should then set eval_status to a non-zero
value.

« 23. The user should follow the instructions for 2 and 3 above before
returning.

« 25. The user should follow the instructions for 2 and 5 above before
returning.

« 35. The user should follow the instructions for 3 and 5 above before
returning.

« 235. The user should follow the instructions for 2, 3 and 5 above before
returning.

in, out

eval_status

is a scalar variable of type int, that is used to indicate if objective
function/gradient/Hessian values can be provided (see above)

in

is a scalar variable of type int, that holds the number of variables

in, out

is a one-dimensional array of size n and type double, that holds the values z of the
optimization variables. The j-th component of x, j =0, ... , n-1, contains ;.

in

is a scalar variable pointer of type double, that holds the value of the objective
function.

GALAHAD 4.0

C interfaces to GALAHAD BGO

3.1 galahad_bgo.h File Reference 21

Parameters
in,out | g is a one-dimensional array of size n and type double, that holds the gradient
g = V. f(x) of the objective function. The j-th component of g, =0, ... , n-1,
contains g;.
in ne is a scalar variable of type int, that holds the number of entries in the lower
triangular part of the Hessian matrix H.
in H_val is a one-dimensional array of size ne and type double, that holds the values of the
entries of the lower triangular part of the Hessian matrix H in any of the available
storage schemes.
in u is a one-dimensional array of size n and type double, that is used for reverse
communication (see above for details)
in,out | v is a one-dimensional array of size n and type double, that is used for reverse
communication (see above for details)
Examples

bgot.c, and bgotf.c.

3.1.2.8 bgo_solve_reverse_without_mat()

void bgo_solve_reverse_without_mat (

void %% data,

int % status,

int * eval_status,

int n,

real_wp_
real_wp_
real_wp_
real_wp_

real_wp_

x[],

gll,
ul],
vil],

int index_nz v[],

int % nnz_v,

const int index _nz ul],

int nnz_u

Find an approximation to the global minimizer of a given function subject to simple bounds on the variables using a
multistart trust-region method.

This call is for the case where access to H = V,,f(z) is provided by Hessian-vector products, but func-
tion/derivative information is only available by returning to the calling procedure.

Parameters

in, out

data

holds private internal data

C interfaces to GALAHAD BGO

GALAHAD 4.0

22

File Documentation

Parameters

in, out

status

is a scalar variable of type int, that gives the entry and exit status from the package.

On initial entry, status must be set to 1.
Possible exit are:

« 0. The run was succesful

» -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status
and inform.bad_alloc respectively.

» -2. A deallocation error occurred. A message indicating the offending array
is written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status
and inform.bad_alloc respectively.

 -3. The restriction n > 0 or requirement that type contains its relevant string
'dense’, 'coordinate’, 'sparse_by_rows', 'diagonal’ or 'absent' has been
violated.

+ -7. The objective function appears to be unbounded from below

» -9. The analysis phase of the factorization failed; the return status from the
factorization package is given in the component inform.factor_status

» -10. The factorization failed; the return status from the factorization package
is given in the component inform.factor_status.

» -11. The solution of a set of linear equations using factors from the
factorization package failed; the return status from the factorization package
is given in the component inform.factor_status.

+ -16. The problem is so ill-conditioned that further progress is impossible.

+ -