
C interfaces to GALAHAD SLS

Jari Fowkes and Nick Gould

STFC Rutherford Appleton Laboratory

Sat Mar 26 2022

i

1 GALAHAD C package sls 1

1.1 Introduction . 1

1.1.1 Purpose . 1

1.1.2 Authors . 1

1.1.3 Originally released . 1

1.1.4 Terminology . 1

1.1.5 Supported external solvers . 1

1.1.6 Method . 2

1.1.7 Reference . 3

1.1.8 Call order . 3

1.1.9 Symmetric matrix storage formats . 3

1.1.9.1 Dense storage format . 4

1.1.9.2 Sparse co-ordinate storage format . 4

1.1.9.3 Sparse row-wise storage format . 4

2 File Index 5

2.1 File List . 5

3 File Documentation 7

3.1 galahad_sls.h File Reference . 7

3.1.1 Data Structure Documentation . 8

3.1.1.1 struct sls_control_type . 8

3.1.1.2 struct sls_time_type . 10

3.1.1.3 struct sls_inform_type . 11

3.1.2 Function Documentation . 13

3.1.2.1 sls_initialize() . 13

3.1.2.2 sls_read_specfile() . 14

3.1.2.3 sls_analyse_matrix() . 14

3.1.2.4 sls_reset_control() . 16

3.1.2.5 sls_factorize_matrix() . 16

3.1.2.6 sls_solve_system() . 18

3.1.2.7 sls_partial_solve_system() . 18

3.1.2.8 sls_information() . 19

3.1.2.9 sls_terminate() . 20

4 Example Documentation 21

4.1 slst.c . 21

4.2 slstf.c . 23

Index 25

C interfaces to GALAHAD SLS GALAHAD 4.0

Chapter 1

GALAHAD C package sls

1.1 Introduction

1.1.1 Purpose

This package solves dense or sparse symmetric systems of linear equations using variants of Gaussian
elimination. Given a sparse symmetric n × n matrix A, and an n-vector b, this subroutine solves the system
Ax = b. The matrix A need not be definite.

The package provides a common interface to a variety of well-known solvers from HSL and elsewhere. Currently
supported solvers include MA27/SILS, HSL_MA57, HSL_MA77, HSL_MA86, HSL_MA87 and HSL_MA97 from
HSL, SSIDS from SPRAL, PARDISO both from the Pardiso Project and Intel's MKL and WSMP from the IBM alpha
Works, as well as POTR, SYTR and SBTR from LAPACK. Note that the solvers themselves do not form part of
this package and must be obtained separately. Dummy instances are provided for solvers that are unavailable.
Also note that additional flexibility may be obtained by calling the solvers directly rather that via this package.

1.1.2 Authors

N. I. M. Gould, STFC-Rutherford Appleton Laboratory, England.

C interface, additionally J. Fowkes, STFC-Rutherford Appleton Laboratory.

1.1.3 Originally released

August 2009, C interface December 2021.

1.1.4 Terminology

The solvers used each produce an LDLT factorization of A or a perturbation thereof, where L is a permuted
lower triangular matrix and D is a block diagonal matrix with blocks of order 1 and 2. It is convenient to write this
factorization in the form

A+ E = PLDLTPT ,

where P is a permutation matrix and E is any diagonal perturbation introduced.

1.1.5 Supported external solvers

The key features of the external solvers supported by sls are given in the following table.

2 GALAHAD C package sls

Table 1.1 External solver characteristics

solver factorization indefinite A out-of-core parallelised

SILS/MA27 multifrontal yes no no

HSL_MA57 multifrontal yes no no

HSL_MA77 multifrontal yes yes OpenMP core

HSL_MA86 left-looking yes no OpenMP fully

HSL_MA87 left-looking no no OpenMP fully

HSL_MA97 multifrontal yes no OpenMP core

SSIDS multifrontal yes no CUDA core

PARDISO left-right-looking yes no OpenMP fully

MKL_PARDISO left-right-looking yes optionally OpenMP fully

WSMP left-right-looking yes no OpenMP fully

POTR dense no no with parallel LAPACK

SYTR dense yes no with parallel LAPACK

PBTR dense band no no with parallel LAPACK

1.1.6 Method

Variants of sparse Gaussian elimination are used.

The solver SILS is available as part of GALAHAD and relies on the HSL Archive package MA27. To obtain HSL
Archive packages, see

http://hsl.rl.ac.uk/archive/ .

The solvers HSL_MA57, HSL_MA77, HSL_MA86, HSL_MA87 and HSL_MA97, the ordering packages MC61
and HSL_MC68, and the scaling packages HSL_MC64 and MC77 are all part of HSL 2011. To obtain HSL 2011
packages, see

http://hsl.rl.ac.uk

The solver SSIDS is from the SPRAL sparse-matrix collection, and is available as part of GALAHAD.

The solver PARDISO is available from the Pardiso Project; version 4.0.0 or above is required. To obtain PARDISO,
see

http://www.pardiso-project.org/ .

The solver MKL PARDISO is available as part of Intel's oneAPI Math Kernel Library (oneMKL). To obtain this version
of PARDISO, see

https://software.intel.com/content/www/us/en/develop/tools/oneapi.html .

The solver WSMP is available from the IBM alpha Works; version 10.9 or above is required. To obtain WSMP, see

http://www.alphaworks.ibm.com/tech/wsmp .

The solvers POTR, SYTR and PBTR, are available as S/DPOTRF/S, S/DSYTRF/S and S/DPBTRF/S as part
of LAPACK. Reference versions are provided by GALAHAD, but for good performance machined-tuned versions
should be used.

Explicit sparsity re-orderings are obtained by calling the HSL package HSL_MC68. Both this, HSL_MA57 and
PARDISO rely optionally on the ordering package METIS from the Karypis Lab. To obtain METIS, see

http://glaros.dtc.umn.edu/gkhome/views/metis/ .

Bandwidth, Profile and wavefront reduction is supported by calling HSL's MC61.

GALAHAD 4.0 C interfaces to GALAHAD SLS

http://hsl.rl.ac.uk/archive/
http://hsl.rl.ac.uk
http://www.pardiso-project.org/
https://software.intel.com/content/www/us/en/develop/tools/oneapi.html
http://www.alphaworks.ibm.com/tech/wsmp
http://glaros.dtc.umn.edu/gkhome/views/metis/

1.1 Introduction 3

1.1.7 Reference

The methods used are described in the user-documentation for

HSL 2011, A collection of Fortran codes for large-scale scientific computation (2011). http://www.hsl.←↩

rl.ac.uk

and papers

O. Schenk and K. Gärtner, `‘Solving Unsymmetric Sparse Systems of Linear Equations with PARDISO’'. Journal of
Future Generation Computer Systems , 20(3) (2004) 475–487,

O. Schenk and K. Gärtner, `‘On fast factorization pivoting methods for symmetric indefinite systems’'. Electronic
Transactions on Numerical Analysis 23 (2006) 158–179, and

A. Gupta, `‘WSMP: Watson Sparse Matrix Package Part I - direct solution of symmetric sparse systems’'. IBM
Research Report RC 21886, IBM T. J. Watson Research Center, NY 10598, USA (2010).

1.1.8 Call order

To solve a given problem, functions from the sls package must be called in the following order:

• sls_initialize - provide default control parameters and set up initial data structures

• sls_read_specfile (optional) - override control values by reading replacement values from a file

• sls_analyse_matrix - set up matrix data structures and analyse the structure to choose a suitable order for
factorization

• sls_reset_control (optional) - possibly change control parameters if a sequence of problems are being solved

• sls_factorize_matrix - form and factorize the matrix A

• one of

– sls_solve_system - solve the linear system of equations Ax = b

– sls_partial_solve_system - solve a linear system Mx = b involving one of the matrix factors M of A

• sls_information (optional) - recover information about the solution and solution process

• sls_terminate - deallocate data structures

See Section 4.1 for examples of use.

1.1.9 Symmetric matrix storage formats

The symmetric n by n coefficient matrix A may be presented and stored in a variety of convenient input formats.
Crucially symmetry is exploited by only storing values from the lower triangular part (i.e, those entries that lie on or
below the leading diagonal).

Both C-style (0 based) and fortran-style (1-based) indexing is allowed. Choose control.f_indexing as
false for C style and true for fortran style; the discussion below presumes C style, but add 1 to indices for the
corresponding fortran version.

Wrappers will automatically convert between 0-based (C) and 1-based (fortran) array indexing, so may be used
transparently from C. This conversion involves both time and memory overheads that may be avoided by supplying
data that is already stored using 1-based indexing.

C interfaces to GALAHAD SLS GALAHAD 4.0

http://www.hsl.rl.ac.uk
http://www.hsl.rl.ac.uk

4 GALAHAD C package sls

1.1.9.1 Dense storage format

The matrix A is stored as a compact dense matrix by rows, that is, the values of the entries of each row in turn are
stored in order within an appropriate real one-dimensional array. Since A is symmetric, only the lower triangular
part (that is the part Aij for 0 ≤ j ≤ i ≤ n − 1) need be held. In this case the lower triangle should be stored
by rows, that is component i ∗ i/2 + j of the storage array val will hold the value Aij (and, by symmetry, Aji) for
0 ≤ j ≤ i ≤ n− 1.

1.1.9.2 Sparse co-ordinate storage format

Only the nonzero entries of the matrices are stored. For the l-th entry, 0 ≤ l ≤ ne− 1, of A, its row index i, column
index j and value Aij , 0 ≤ j ≤ i ≤ n− 1, are stored as the l-th components of the integer arrays row and col and
real array val, respectively, while the number of nonzeros is recorded as ne = ne. Note that only the entries in the
lower triangle should be stored.

1.1.9.3 Sparse row-wise storage format

Again only the nonzero entries are stored, but this time they are ordered so that those in row i appear directly before
those in row i+1. For the i-th row of A the i-th component of the integer array ptr holds the position of the first entry
in this row, while ptr(n) holds the total number of entries plus one. The column indices j, 0 ≤ j ≤ i, and values Aij

of the entries in the i-th row are stored in components l = ptr(i), . . ., ptr(i+1)-1 of the integer array col, and real array
val, respectively. Note that as before only the entries in the lower triangle should be stored. For sparse matrices,
this scheme almost always requires less storage than its predecessor.

GALAHAD 4.0 C interfaces to GALAHAD SLS

Chapter 2

File Index

2.1 File List

Here is a list of all files with brief descriptions:

galahad_sls.h . 7

6 File Index

GALAHAD 4.0 C interfaces to GALAHAD SLS

Chapter 3

File Documentation

3.1 galahad_sls.h File Reference

#include <stdbool.h>
#include "galahad_precision.h"
#include "galahad_sils.h"
#include "hsl_ma57.h"
#include "hsl_ma77.h"
#include "hsl_ma86.h"
#include "hsl_ma87.h"
#include "hsl_ma97.h"
#include "spral_ssids.h"
#include "hsl_mc64.h"
#include "hsl_mc68.h"

Data Structures

• struct sls_control_type
• struct sls_time_type
• struct sls_inform_type

Functions

• void sls_initialize (const char solver[], void ∗∗data, struct sls_control_type ∗control, int ∗status)
• void sls_read_specfile (struct sls_control_type ∗control, const char specfile[])
• void sls_analyse_matrix (struct sls_control_type ∗control, void ∗∗data, int ∗status, int n, const char type[], int

ne, const int row[], const int col[], const int ptr[])
• void sls_reset_control (struct sls_control_type ∗control, void ∗∗data, int ∗status)
• void sls_factorize_matrix (void ∗∗data, int ∗status, int ne, const real_wp_ val[])
• void sls_solve_system (void ∗∗data, int ∗status, int n, real_wp_ sol[])
• void sls_partial_solve_system (const char part[], void ∗∗data, int ∗status, int n, real_wp_ sol[])
• void sls_information (void ∗∗data, struct sls_inform_type ∗inform, int ∗status)
• void sls_terminate (void ∗∗data, struct sls_control_type ∗control, struct sls_inform_type ∗inform)

8 File Documentation

3.1.1 Data Structure Documentation

3.1.1.1 struct sls_control_type

control derived type as a C struct

Examples

slst.c, and slstf.c.

Data Fields

bool f_indexing use C or Fortran sparse matrix indexing

int error unit for error messages

int warning unit for warning messages

int out unit for monitor output

int statistics unit for statistical output

int print_level controls level of diagnostic output

int print_level_solver controls level of diagnostic output from external solver

int bits number of bits used in architecture
int block_size_kernel the target blocksize for kernel factorization

int block_size_elimination the target blocksize for parallel elimination

int blas_block_size_factorize level 3 blocking in factorize

int blas_block_size_solve level 2 and 3 blocking in solve

int node_amalgamation a child node is merged with its parent if they both involve
fewer than node_amalgamation eliminations

int initial_pool_size initial size of task-pool arrays for parallel elimination

int min_real_factor_size initial size for real array for the factors and other data

int min_integer_factor_size initial size for integer array for the factors and other data

long int max_real_factor_size maximum size for real array for the factors and other data

long int max_integer_factor_size maximum size for integer array for the factors and other
data

long int max_in_core_store amount of in-core storage to be used for out-of-core
factorization

real_wp_ array_increase_factor factor by which arrays sizes are to be increased if they are
too small

real_wp_ array_decrease_factor if previously allocated internal workspace arrays are
greater than array_decrease_factor times the currently
required sizes, they are reset to current requirements

int pivot_control pivot control:

• 1 Numerical pivoting will be performed.

• 2 No pivoting will be performed and an error exit will
occur immediately a pivot sign change is detected.

• 3 No pivoting will be performed and an error exit will
occur if a zero pivot is detected.

• 4 No pivoting is performed but pivots are changed to
all be positive

GALAHAD 4.0 C interfaces to GALAHAD SLS

3.1 galahad_sls.h File Reference 9

Data Fields

int ordering controls ordering (ignored if explicit PERM argument
present)

• <0 chosen by the specified solver with its own
ordering-selected value -ordering

• 0 chosen package default (or the AMD ordering if no
package default)

• 1 Approximate minimum degree (AMD) with
provisions for "dense" rows/col

• 2 Minimum degree

• 3 Nested disection

• 4 indefinite ordering to generate a combination of
1x1 and 2x2 pivots

• 5 Profile/Wavefront reduction

• 6 Bandwidth reduction

• >6 ordering chosen depending on matrix
characteristics (not yet implemented)

int full_row_threshold controls threshold for detecting full rows in analyse,
registered as percentage of matrix order. If 100, only fully
dense rows detected (defa

int row_search_indefinite number of rows searched for pivot when using indefinite
ordering

int scaling controls scaling (ignored if explicit SCALE argument
present)

• <0 chosen by the specified solver with its own
scaling-selected value -scaling

• 0 No scaling

• 1 Scaling using HSL's MC64

• 2 Scaling using HSL's MC77 based on the row
one-norm

• 3 Scaling using HSL's MC77 based on the row
infinity-norm

int scale_maxit the number of scaling iterations performed (default 10 used
if .scale_maxit < 0)

real_wp_ scale_thresh the scaling iteration stops as soon as the row/column
norms are less than 1+/-.scale_thresh

real_wp_ relative_pivot_tolerance pivot threshold

real_wp_ minimum_pivot_tolerance smallest permitted relative pivot threshold

real_wp_ absolute_pivot_tolerance any pivot small than this is considered zero

real_wp_ zero_tolerance any entry smaller than this is considered zero

real_wp_ zero_pivot_tolerance any pivot smaller than this is considered zero for
positive-definite sol

real_wp_ negative_pivot_tolerance any pivot smaller than this is considered to be negative for
p-d solvers

C interfaces to GALAHAD SLS GALAHAD 4.0

10 File Documentation

Data Fields

real_wp_ static_pivot_tolerance used for setting static pivot level

real_wp_ static_level_switch used for switch to static

real_wp_ consistency_tolerance used to determine whether a system is consistent when
seeking a Fredholm alternative

int max_iterative_refinements maximum number of iterative refinements allowed

real_wp_ acceptable_residual_relative refinement will cease as soon as the residual ||Ax-b|| falls
below max(acceptable_residual_relative ∗ ||b||,
acceptable_residual_absolute

real_wp_ acceptable_residual_absolute see acceptable_residual_relative

bool multiple_rhs set .multiple_rhs to .true. if there is possibility that the
solver will be required to solve systems with more than one
right-hand side. More efficient execution may be possible
when .multiple_rhs = .false.

bool generate_matrix_file if .generate_matrix_file is .true. if a file describing the
current matrix is to be generated

int matrix_file_device specifies the unit number to write the input matrix (in
co-ordinate form

char matrix_file_name[31] name of generated matrix file containing input problem

char out_of_core_directory[401] directory name for out of core factorization and additional
real workspace in the indefinite case, respectively

char out_of_core_integer_factor_file[401] out of core superfile names for integer and real factor data,
real works and additional real workspace in the indefinite
case, respectively

char out_of_core_real_factor_file[401] see out_of_core_integer_factor_file

char out_of_core_real_work_file[401] see out_of_core_integer_factor_file

char out_of_core_indefinite_file[401] see out_of_core_integer_factor_file

char out_of_core_restart_file[501] see out_of_core_integer_factor_file

char prefix[31] all output lines will be prefixed by
prefix(2:LEN(TRIM(.prefix))-1) where prefix contains the
required string enclosed in quotes, e.g. "string" or 'string'

3.1.1.2 struct sls_time_type

time derived type as a C struct

Data Fields

real_wp_ total the total cpu time spent in the package

real_wp_ analyse the total cpu time spent in the analysis phase

real_wp_ factorize the total cpu time spent in the factorization phase

real_wp_ solve the total cpu time spent in the solve phases

real_wp_ order_external the total cpu time spent by the external solver in the ordering phase

real_wp_ analyse_external the total cpu time spent by the external solver in the analysis phase

real_wp_ factorize_external the total cpu time spent by the external solver in the factorization pha

real_wp_ solve_external the total cpu time spent by the external solver in the solve phases

real_wp_ clock_total the total clock time spent in the package

real_wp_ clock_analyse the total clock time spent in the analysis phase

real_wp_ clock_factorize the total clock time spent in the factorization phase

GALAHAD 4.0 C interfaces to GALAHAD SLS

3.1 galahad_sls.h File Reference 11

Data Fields

real_wp_ clock_solve the total clock time spent in the solve phases

real_wp_ clock_order_external the total clock time spent by the external solver in the ordering phase

real_wp_ clock_analyse_external the total clock time spent by the external solver in the analysis phase

real_wp_ clock_factorize_external the total clock time spent by the external solver in the factorization p

real_wp_ clock_solve_external the total clock time spent by the external solver in the solve phases

3.1.1.3 struct sls_inform_type

inform derived type as a C struct

Examples

slst.c, and slstf.c.

Data Fields

int status reported return status: 0 success -1 allocation error
-2 deallocation error -3 matrix data faulty (.n < 1,
.ne < 0) -20 alegedly +ve definite matrix is not -29
unavailable option -31 input order is not a
permutation or is faulty in some other way -32 >
control.max_integer_factor_size integer space
required for factor -33 >
control.max_real_factor_size real space required for
factors -40 not possible to alter the diagonals -41 no
access to permutation or pivot sequence used -42
no access to diagonal perturbations -43
direct-access file error -50 solver-specific error; see
the solver's info parameter -101 unknown solver

int alloc_status STAT value after allocate failure.
char bad_alloc[81] name of array which provoked an allocate failure

int more_info further information on failure
int entries number of entries
int out_of_range number of indices out-of-range

int duplicates number of duplicates

int upper number of entries from the strict upper triangle

int missing_diagonals number of missing diagonal entries for an
allegedly-definite matrix

int max_depth_assembly_tree maximum depth of the assembly tree

int nodes_assembly_tree nodes in the assembly tree (= number of elimination
steps)

long int real_size_desirable desirable or actual size for real array for the factors
and other data

long int integer_size_desirable desirable or actual size for integer array for the
factors and other dat

long int real_size_necessary necessary size for real array for the factors and
other data

long int integer_size_necessary necessary size for integer array for the factors and
other data

long int real_size_factors predicted or actual number of reals to hold factors

C interfaces to GALAHAD SLS GALAHAD 4.0

12 File Documentation

Data Fields

long int integer_size_factors predicted or actual number of integers to hold
factors

long int entries_in_factors number of entries in factors

int max_task_pool_size maximum number of tasks in the factorization task
pool

int max_front_size forecast or actual size of largest front

int compresses_real number of compresses of real data

int compresses_integer number of compresses of integer data

int two_by_two_pivots number of 2x2 pivots

int semi_bandwidth semi-bandwidth of matrix following bandwidth
reduction

int delayed_pivots number of delayed pivots (total)

int pivot_sign_changes number of pivot sign changes if no pivoting is used
successfully

int static_pivots number of static pivots chosen

int first_modified_pivot first pivot modification when static pivoting

int rank estimated rank of the matrix
int negative_eigenvalues number of negative eigenvalues

int num_zero number of pivots that are considered zero (and
ignored)

int iterative_refinements number of iterative refinements performed

long int flops_assembly anticipated or actual number of floating-point
operations in assembly

long int flops_elimination anticipated or actual number of floating-point
operations in elimination

long int flops_blas additional number of floating-point operations for
BLAS

real_wp_ largest_modified_pivot largest diagonal modification when static pivoting or
ensuring definiten

real_wp_ minimum_scaling_factor minimum scaling factor

real_wp_ maximum_scaling_factor maximum scaling factor

real_wp_ condition_number_1 esimate of the condition number of the matrix
(category 1 equations)

real_wp_ condition_number_2 estimate of the condition number of the matrix
(category 2 equations)

real_wp_ backward_error_1 esimate of the backward error (category 1
equations)

real_wp_ backward_error_2 esimate of the backward error (category 2
equations)

real_wp_ forward_error estimate of forward error

bool alternative has an "alternative" y: A y = 0 and yT b > 0 been
found when trying to solve A x = b ?

struct sls_time_type time timings (see above)

struct sils_ainfo_type sils_ainfo the output structure from sils

struct sils_finfo_type sils_finfo see sils_ainfo

struct sils_sinfo_type sils_sinfo see sils_ainfo

struct ma57_ainfo ma57_ainfo the output structure from ma57

struct ma57_finfo ma57_finfo see ma57_ainfo
struct ma57_sinfo ma57_sinfo see ma57_ainfo

GALAHAD 4.0 C interfaces to GALAHAD SLS

3.1 galahad_sls.h File Reference 13

Data Fields

struct ma77_info ma77_inform the output structure from ma77

struct ma86_info ma86_inform the output structure from ma86

struct ma87_info ma87_inform the output structure from ma87

struct ma97_info ma97_inform the output structure from ma97

struct spral_ssids_inform ssids_inform the output structure from ssids

int mc61_info[10] the integer and real output arrays from mc61

real_wp_ mc61_rinfo[15] see mc61_info

struct mc64_info mc64_inform the output structure from mc64

struct mc68_info mc68_inform the output structure from mc68

int mc77_info[10] the integer output array from mc77

real_wp_ mc77_rinfo[10] the real output status from mc77

int pardiso_error the output scalars and arrays from pardiso

int pardiso_IPARM[64] see pardiso_error

real_wp_ pardiso_DPARM[64] see pardiso_error

int mkl_pardiso_error the output scalars and arrays from mkl_pardiso

int mkl_pardiso_IPARM[64] see mkl_pardiso_error

int wsmp_error the output scalars and arrays from wsmp

int wsmp_iparm[64] see wsmp_error

real_wp_ wsmp_dparm[64] see wsmp_error

int lapack_error the output scalars and arrays from LAPACK routines

3.1.2 Function Documentation

3.1.2.1 sls_initialize()

void sls_initialize (

const char solver[],

void ∗∗ data,

struct sls_control_type ∗ control,

int ∗ status)

Select solver, set default control values and initialize private data

Parameters

in solver is a one-dimensional array of type char that specifies the solver package that should be
used to factorize the matrix A. It should be one of 'sils', 'ma27', 'ma57', 'ma77', 'ma86',
'ma87', 'ma97', 'ssids', 'pardiso', 'mkl pardiso', 'wsmp', 'potr', 'sytr' or 'pbtr'; lower or
upper case variants are allowed.

in,out data holds private internal data

out control is a struct containing control information (see sls_control_type)

out status is a scalar variable of type int, that gives the exit status from the package. Possible
values are:

• 0. The import was succesful.

• -26. The requested solver is not available.
C interfaces to GALAHAD SLS GALAHAD 4.0

14 File Documentation

Examples

slst.c, and slstf.c.

3.1.2.2 sls_read_specfile()

void sls_read_specfile (

struct sls_control_type ∗ control,

const char specfile[])

Read the content of a specification file, and assign values associated with given keywords to the corresponding
control parameters. By default, the spcification file will be named RUNSLS.SPC and lie in the current directory.
Refer to Table 2.1 in the fortran documentation provided in $GALAHAD/doc/sls.pdf for a list of keywords that may
be set.

Parameters

in,out control is a struct containing control information (see sls_control_type)

in specfile is a character string containing the name of the specification file

3.1.2.3 sls_analyse_matrix()

void sls_analyse_matrix (

struct sls_control_type ∗ control,

void ∗∗ data,

int ∗ status,

int n,

const char type[],

int ne,

const int row[],

const int col[],

const int ptr[])

Import structural matrix data into internal storage prior to solution

Parameters

in control is a struct whose members provide control paramters for the remaining prcedures (see
sls_control_type)

in,out data holds private internal data

GALAHAD 4.0 C interfaces to GALAHAD SLS

3.1 galahad_sls.h File Reference 15

Parameters

out status is a scalar variable of type int, that gives the exit status from the package.
Possible values are:

• 0. The import and analysis were conducted succesfully.

• -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -3. The restrictions n > 0 or requirement that the matrix type must contain the
relevant string 'dense', 'coordinate' or 'sparse_by_rows has been violated.

• -20. The matrix is not positive definite while the solver used expected it to be.

• -26. The requested solver is not available.

• -29. This option is not available with this solver.

• -32. More than control.max integer factor size words of internal integer storage
are required for in-core factorization.

• -34. The package PARDISO failed; check the solver-specific information
components inform.pardiso iparm and inform.pardiso_dparm along with
PARDISO’s documentation for more details.

• -35. The package WSMP failed; check the solver-specific information
components inform.wsmp_iparm and inform.wsmp dparm along with WSMP’s
documentation for more details.

• -36. The scaling package HSL MC64 failed; check the solver-specific information
component inform.mc64_info along with HSL MC64’s documentation for more
details.

• -37. The scaling package MC77 failed; check the solver-specific information
components inform.mc77 info and inform.mc77_rinfo along with MC77’s
documentation for more details.

• -43. A direct-access file error occurred. See the value of inform.ma77_info.flag
for more details.

• -50. A solver-specific error occurred; check the solver-specific information
component of inform along with the solver’s documentation for more details.

in n is a scalar variable of type int, that holds the number of rows in the symmetric matrix A.

in type is a one-dimensional array of type char that specifies the symmetric storage scheme
used for the matrix A. It should be one of 'coordinate', 'sparse_by_rows' or 'dense';
lower or upper case variants are allowed.

in ne is a scalar variable of type int, that holds the number of entries in the lower triangular
part of A in the sparse co-ordinate storage scheme. It need not be set for any of the
other schemes.

in row is a one-dimensional array of size ne and type int, that holds the row indices of the lower
triangular part of A in the sparse co-ordinate storage scheme. It need not be set for any
of the other three schemes, and in this case can be NULL.

C interfaces to GALAHAD SLS GALAHAD 4.0

16 File Documentation

Parameters

in col is a one-dimensional array of size ne and type int, that holds the column indices of the
lower triangular part of A in either the sparse co-ordinate, or the sparse row-wise
storage scheme. It need not be set when the dense storage scheme is used, and in this
case can be NULL.

in ptr is a one-dimensional array of size n+1 and type int, that holds the starting position of
each row of the lower triangular part of A, as well as the total number of entries plus
one, in the sparse row-wise storage scheme. It need not be set when the other
schemes are used, and in this case can be NULL.

Examples

slst.c, and slstf.c.

3.1.2.4 sls_reset_control()

void sls_reset_control (

struct sls_control_type ∗ control,

void ∗∗ data,

int ∗ status)

Reset control parameters after import if required.

Parameters

in control is a struct whose members provide control paramters for the remaining prcedures (see
sls_control_type)

in,out data holds private internal data

in,out status is a scalar variable of type int, that gives the exit status from the package. Possible
values are:

• 0. The import was succesful.

Examples

slst.c, and slstf.c.

3.1.2.5 sls_factorize_matrix()

void sls_factorize_matrix (

void ∗∗ data,

int ∗ status,

int ne,

const real_wp_ val[])

Form and factorize the symmetric matrix A.

GALAHAD 4.0 C interfaces to GALAHAD SLS

3.1 galahad_sls.h File Reference 17

Parameters

in,out data holds private internal data

out status is a scalar variable of type int, that gives the exit status from the package.
Possible values are:

• 0. The factors were generated succesfully.

• -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -3. The restrictions n > 0 or requirement that the matrix type must contain the
relevant string 'dense', 'coordinate' or 'sparse_by_rows has been violated.

• -20. The matrix is not positive definite while the solver used expected it to be.

• -26. The requested solver is not available.

• -29. This option is not available with this solver.

• -32. More than control.max integer factor size words of internal integer storage
are required for in-core factorization.

• -34. The package PARDISO failed; check the solver-specific information
components inform.pardiso iparm and inform.pardiso_dparm along with
PARDISO’s documentation for more details.

• -35. The package WSMP failed; check the solver-specific information components
inform.wsmp_iparm and inform.wsmp dparm along with WSMP’s documentation
for more details.

• -36. The scaling package HSL MC64 failed; check the solver-specific information
component inform.mc64_info along with HSL MC64’s documentation for more
details.

• -37. The scaling package MC77 failed; check the solver-specific information
components inform.mc77 info and inform.mc77_rinfo along with MC77’s
documentation for more details.

• -43. A direct-access file error occurred. See the value of inform.ma77_info.flag for
more details.

• -50. A solver-specific error occurred; check the solver-specific information
component of inform along with the solver’s documentation for more details.

in ne is a scalar variable of type int, that holds the number of entries in the lower triangular
part of the symmetric matrix A.

in val is a one-dimensional array of size ne and type double, that holds the values of the
entries of the lower triangular part of the symmetric matrix A in any of the supported
storage schemes.

Examples

slst.c, and slstf.c.

C interfaces to GALAHAD SLS GALAHAD 4.0

18 File Documentation

3.1.2.6 sls_solve_system()

void sls_solve_system (

void ∗∗ data,

int ∗ status,

int n,

real_wp_ sol[])

Solve the linear system Ax = b.

Parameters

in,out data holds private internal data

in,out status is a scalar variable of type int, that gives the exit status from the package.
Possible values are:

• 0. The required solution was obtained.

• -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -34. The package PARDISO failed; check the solver-specific information
components inform.pardiso iparm and inform.pardiso_dparm along with
PARDISO’s documentation for more details.

• -35. The package WSMP failed; check the solver-specific information components
inform.wsmp_iparm and inform.wsmp dparm along with WSMP’s documentation
for more details.

in n is a scalar variable of type int, that holds the number of entries in the vectors b and x.

in,out sol is a one-dimensional array of size n and type double. On entry, it must hold the vector b.
On a successful exit, its contains the solution x.

Examples

slst.c, and slstf.c.

3.1.2.7 sls_partial_solve_system()

void sls_partial_solve_system (

const char part[],

void ∗∗ data,

int ∗ status,

int n,

real_wp_ sol[])

Given the factorization A = LDU with U = LT , solve the linear system Mx = b, where M is one of L, D, U or
S = L

√
D.

GALAHAD 4.0 C interfaces to GALAHAD SLS

3.1 galahad_sls.h File Reference 19

Parameters

in part is a one-dimensional array of type char that specifies the component M of the
factorization that is to be used. It should be one of "L", "D", "U" or "S", and these
correspond to the parts L, D, U and S; lower or upper case variants are allowed.

in,out data holds private internal data

in,out status is a scalar variable of type int, that gives the entry and exit status from the package.
On initial entry, status must be set to 1.
Possible exit are:

• 0. The required solution was obtained.

• -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -34. The package PARDISO failed; check the solver-specific information
components inform.pardiso iparm and inform.pardiso_dparm along with
PARDISO’s documentation for more details.

• -35. The package WSMP failed; check the solver-specific information components
inform.wsmp_iparm and inform.wsmp dparm along with WSMP’s documentation
for more details.

in n is a scalar variable of type int, that holds the number of entries in the vectors b and x.

in,out sol is a one-dimensional array of size n and type double. On entry, it must hold the vector b.
On a successful exit, its contains the solution x.

Examples

slst.c, and slstf.c.

3.1.2.8 sls_information()

void sls_information (

void ∗∗ data,

struct sls_inform_type ∗ inform,

int ∗ status)

Provide output information

Parameters

in,out data holds private internal data

out inform is a struct containing output information (see sls_inform_type)

out status is a scalar variable of type int, that gives the exit status from the package. Possible
values are (currently):

• 0. The values were recorded succesfully
C interfaces to GALAHAD SLS GALAHAD 4.0

20 File Documentation

Examples

slst.c, and slstf.c.

3.1.2.9 sls_terminate()

void sls_terminate (

void ∗∗ data,

struct sls_control_type ∗ control,

struct sls_inform_type ∗ inform)

Deallocate all internal private storage

Parameters

in,out data holds private internal data

out control is a struct containing control information (see sls_control_type)

out inform is a struct containing output information (see sls_inform_type)

Examples

slst.c, and slstf.c.

GALAHAD 4.0 C interfaces to GALAHAD SLS

Chapter 4

Example Documentation

4.1 slst.c

This is an example of how to use the package in conjunction with the sparse linear solver sils. A variety of
supported matrix storage formats are illustrated.

Notice that C-style indexing is used, and that this is flaggeed by setting control.f_indexing to false.
/* slst.c */
/* Full test for the SLS C interface using C sparse matrix indexing */
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <float.h>
#include "galahad_sls.h"
int maxabsarray(double a[],int n, double *maxabs);
int main(void) {

// Derived types
void *data;
struct sls_control_type control;
struct sls_inform_type inform;
// Set problem data
int n = 5; // dimension of A
int ne = 7; // number of entries of A
int dense_ne = 15; // number of elements of A as a dense matrix
int row[] = {0, 1, 1, 2, 2, 3, 4}; // row indices, NB lower triangle
int col[] = {0, 0, 4, 1, 2, 2, 4}; // column indices
int ptr[] = {0, 1, 3, 5, 6, 7}; // pointers to indices
double val[] = {2.0, 3.0, 6.0, 4.0, 1.0, 5.0, 1.0}; // values
double dense[] = {2.0, 3.0, 0.0, 0.0, 4.0, 1.0, 0.0,

0.0, 5.0, 0.0, 0.0, 6.0, 0.0, 0.0, 1.0};
double rhs[] = {8.0, 45.0, 31.0, 15.0, 17.0};
double sol[] = {1.0, 2.0, 3.0, 4.0, 5.0};
int i, status;
double x[n];
double error[n];
double norm_residual;
double good_x = pow(DBL_EPSILON, 0.3333);
printf(" C sparse matrix indexing\n\n");
printf(" basic tests of storage formats\n\n");
printf(" storage RHS refine partial\n");
for(int d=1; d <= 3; d++){

// Initialize SLS - use the sils solver
sls_initialize("sils", &data, &control, &status);
// Set user-defined control options
control.f_indexing = false; // C sparse matrix indexing
switch(d){ // import matrix data and factorize

case 1: // sparse co-ordinate storage
printf(" coordinate ");
sls_analyse_matrix(&control, &data, &status, n,

"coordinate", ne, row, col, NULL);
sls_factorize_matrix(&data, &status, ne, val);
break;

case 2: // sparse by rows
printf(" sparse by rows ");

22 Example Documentation

sls_analyse_matrix(&control, &data, &status, n,
"sparse_by_rows", ne, NULL, col, ptr);

sls_factorize_matrix(&data, &status, ne, val);
break;

case 3: // dense
printf(" dense ");
sls_analyse_matrix(&control, &data, &status, n,

"dense", ne, NULL, NULL, NULL);
sls_factorize_matrix(&data, &status, dense_ne, dense);
break;

}
// Set right-hand side and solve the system
for(i=0; i<n; i++) x[i] = rhs[i];
sls_solve_system(&data, &status, n, x);
sls_information(&data, &inform, &status);
if(inform.status == 0){
for(i=0; i<n; i++) error[i] = x[i]-sol[i];
status = maxabsarray(error, n, &norm_residual);
if(norm_residual < good_x){

printf(" ok ");
}else{

printf(" fail ");
}

}else{
printf(" SLS_solve exit status = %1i\n", inform.status);

}
//printf("sol: ");
//for(int i = 0; i < n; i++) printf("%f ", x[i]);
// resolve, this time using iterative refinement
control.max_iterative_refinements = 1;
sls_reset_control(&control, &data, &status);
for(i=0; i<n; i++) x[i] = rhs[i];
sls_solve_system(&data, &status, n, x);
sls_information(&data, &inform, &status);
if(inform.status == 0){
for(i=0; i<n; i++) error[i] = x[i]-sol[i];
status = maxabsarray(error, n, &norm_residual);
if(norm_residual < good_x){

printf(" ok ");
}else{

printf(" fail ");
}

}else{
printf(" SLS_solve exit status = %1i\n", inform.status);

}
// obtain the solution by part solves
for(i=0; i<n; i++) x[i] = rhs[i];
sls_partial_solve_system("L", &data, &status, n, x);
sls_partial_solve_system("D", &data, &status, n, x);
sls_partial_solve_system("U", &data, &status, n, x);
sls_information(&data, &inform, &status);
if(inform.status == 0){
for(i=0; i<n; i++) error[i] = x[i]-sol[i];
status = maxabsarray(error, n, &norm_residual);
if(norm_residual < good_x){

printf(" ok ");
}else{

printf(" fail ");
}

}else{
printf(" SLS_solve exit status = %1i\n", inform.status);

}
// Delete internal workspace
sls_terminate(&data, &control, &inform);
printf("\n");

}
}
int maxabsarray(double a[],int n, double *maxabs)
{

int i;
double b,max;
max=abs(a[0]);
for(i=1; i<n; i++)
{

b = abs(a[i]);
if(max<b)

max=b;
}

*maxabs=max;
}

GALAHAD 4.0 C interfaces to GALAHAD SLS

4.2 slstf.c 23

4.2 slstf.c

This is the same example, but now fortran-style indexing is used.

/* slstf.c */
/* Full test for the SLS C interface using Fortran sparse matrix indexing */
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <float.h>
#include "galahad_sls.h"
int maxabsarray(double a[],int n, double *maxabs);
int main(void) {

// Derived types
void *data;
struct sls_control_type control;
struct sls_inform_type inform;
// Set problem data
int n = 5; // dimension of A
int ne = 7; // number of entries of A
int dense_ne = 15; // number of elements of A as a dense matrix
int row[] = {1, 2, 2, 3, 3, 4, 5}; // row indices, NB lower triangle
int col[] = {1, 1, 5, 2, 3, 3, 5}; // column indices
int ptr[] = {1, 2, 4, 6, 7, 8}; // pointers to indices
double val[] = {2.0, 3.0, 6.0, 4.0, 1.0, 5.0, 1.0}; // values
double dense[] = {2.0, 3.0, 0.0, 0.0, 4.0, 1.0, 0.0,

0.0, 5.0, 0.0, 0.0, 6.0, 0.0, 0.0, 1.0};
double rhs[] = {8.0, 45.0, 31.0, 15.0, 17.0};
double sol[] = {1.0, 2.0, 3.0, 4.0, 5.0};
int i, status;
double x[n];
double error[n];
double norm_residual;
double good_x = pow(DBL_EPSILON, 0.3333);
printf(" Fortran sparse matrix indexing\n\n");
printf(" basic tests of storage formats\n\n");
printf(" storage RHS refine partial\n");
for(int d=1; d <= 3; d++){

// Initialize SLS - use the sils solver
sls_initialize("sils", &data, &control, &status);
// Set user-defined control options
control.f_indexing = true; // Fortran sparse matrix indexing
switch(d){ // import matrix data and factorize

case 1: // sparse co-ordinate storage
printf(" coordinate ");
sls_analyse_matrix(&control, &data, &status, n,

"coordinate", ne, row, col, NULL);
sls_factorize_matrix(&data, &status, ne, val);
break;

case 2: // sparse by rows
printf(" sparse by rows ");
sls_analyse_matrix(&control, &data, &status, n,

"sparse_by_rows", ne, NULL, col, ptr);
sls_factorize_matrix(&data, &status, ne, val);
break;

case 3: // dense
printf(" dense ");
sls_analyse_matrix(&control, &data, &status, n,

"dense", ne, NULL, NULL, NULL);
sls_factorize_matrix(&data, &status, dense_ne, dense);
break;

}
// Set right-hand side and solve the system
for(i=0; i<n; i++) x[i] = rhs[i];
sls_solve_system(&data, &status, n, x);
sls_information(&data, &inform, &status);
if(inform.status == 0){
for(i=0; i<n; i++) error[i] = x[i]-sol[i];
status = maxabsarray(error, n, &norm_residual);
if(norm_residual < good_x){

printf(" ok ");
}else{

printf(" fail ");
}

}else{
printf(" SLS_solve exit status = %1i\n", inform.status);

}
//printf("sol: ");
//for(int i = 0; i < n; i++) printf("%f ", x[i]);
// resolve, this time using iterative refinement
control.max_iterative_refinements = 1;
sls_reset_control(&control, &data, &status);
for(i=0; i<n; i++) x[i] = rhs[i];
sls_solve_system(&data, &status, n, x);
sls_information(&data, &inform, &status);

C interfaces to GALAHAD SLS GALAHAD 4.0

24 Example Documentation

if(inform.status == 0){
for(i=0; i<n; i++) error[i] = x[i]-sol[i];
status = maxabsarray(error, n, &norm_residual);
if(norm_residual < good_x){

printf(" ok ");
}else{

printf(" fail ");
}

}else{
printf(" SLS_solve exit status = %1i\n", inform.status);

}
// obtain the solution by part solves
for(i=0; i<n; i++) x[i] = rhs[i];
sls_partial_solve_system("L", &data, &status, n, x);
sls_partial_solve_system("D", &data, &status, n, x);
sls_partial_solve_system("U", &data, &status, n, x);
sls_information(&data, &inform, &status);
if(inform.status == 0){
for(i=0; i<n; i++) error[i] = x[i]-sol[i];
status = maxabsarray(error, n, &norm_residual);
if(norm_residual < good_x){

printf(" ok ");
}else{

printf(" fail ");
}

}else{
printf(" SLS_solve exit status = %1i\n", inform.status);

}
// Delete internal workspace
sls_terminate(&data, &control, &inform);
printf("\n");

}
}
int maxabsarray(double a[],int n, double *maxabs)
{

int i;
double b,max;
max=abs(a[0]);
for(i=1; i<n; i++)
{

b = abs(a[i]);
if(max<b)

max=b;
}

*maxabs=max;
}

GALAHAD 4.0 C interfaces to GALAHAD SLS

Index

galahad_sls.h, 7
sls_analyse_matrix, 14
sls_factorize_matrix, 16
sls_information, 19
sls_initialize, 13
sls_partial_solve_system, 18
sls_read_specfile, 14
sls_reset_control, 16
sls_solve_system, 17
sls_terminate, 20

sls_analyse_matrix
galahad_sls.h, 14

sls_control_type, 8
sls_factorize_matrix

galahad_sls.h, 16
sls_inform_type, 11
sls_information

galahad_sls.h, 19
sls_initialize

galahad_sls.h, 13
sls_partial_solve_system

galahad_sls.h, 18
sls_read_specfile

galahad_sls.h, 14
sls_reset_control

galahad_sls.h, 16
sls_solve_system

galahad_sls.h, 17
sls_terminate

galahad_sls.h, 20
sls_time_type, 10

	1 GALAHAD C package sls
	1.1 Introduction
	1.1.1 Purpose
	1.1.2 Authors
	1.1.3 Originally released
	1.1.4 Terminology
	1.1.5 Supported external solvers
	1.1.6 Method
	1.1.7 Reference
	1.1.8 Call order
	1.1.9 Symmetric matrix storage formats
	1.1.9.1 Dense storage format
	1.1.9.2 Sparse co-ordinate storage format
	1.1.9.3 Sparse row-wise storage format

	2 File Index
	2.1 File List

	3 File Documentation
	3.1 galahad_sls.h File Reference
	3.1.1 Data Structure Documentation
	3.1.1.1 struct sls_control_type
	3.1.1.2 struct sls_time_type
	3.1.1.3 struct sls_inform_type

	3.1.2 Function Documentation
	3.1.2.1 sls_initialize()
	3.1.2.2 sls_read_specfile()
	3.1.2.3 sls_analyse_matrix()
	3.1.2.4 sls_reset_control()
	3.1.2.5 sls_factorize_matrix()
	3.1.2.6 sls_solve_system()
	3.1.2.7 sls_partial_solve_system()
	3.1.2.8 sls_information()
	3.1.2.9 sls_terminate()

	4 Example Documentation
	4.1 slst.c
	4.2 slstf.c

	Index

