
C interfaces to GALAHAD SBLS

Jari Fowkes and Nick Gould

STFC Rutherford Appleton Laboratory

Sat Mar 26 2022

i

1 GALAHAD C package sbls 1

1.1 Introduction . 1

1.1.1 Purpose . 1

1.1.2 Authors . 1

1.1.3 Originally released . 2

1.1.4 Method . 2

1.1.5 Call order . 2

1.1.6 Unsymmetric matrix storage formats . 3

1.1.6.1 Dense storage format . 3

1.1.6.2 Sparse co-ordinate storage format . 3

1.1.6.3 Sparse row-wise storage format . 3

1.1.7 Symmetric matrix storage formats . 3

1.1.7.1 Dense storage format . 3

1.1.7.2 Sparse co-ordinate storage format . 4

1.1.7.3 Sparse row-wise storage format . 4

1.1.7.4 Diagonal storage format . 4

1.1.7.5 Multiples of the identity storage format . 4

1.1.7.6 The identity matrix format . 4

1.1.7.7 The zero matrix format . 4

2 File Index 5

2.1 File List . 5

3 File Documentation 7

3.1 galahad_sbls.h File Reference . 7

3.1.1 Data Structure Documentation . 7

3.1.1.1 struct sbls_control_type . 7

3.1.1.2 struct sbls_time_type . 10

3.1.1.3 struct sbls_inform_type . 10

3.1.2 Function Documentation . 11

3.1.2.1 sbls_initialize() . 11

3.1.2.2 sbls_read_specfile() . 12

3.1.2.3 sbls_import() . 12

3.1.2.4 sbls_reset_control() . 14

3.1.2.5 sbls_factorize_matrix() . 14

3.1.2.6 sbls_solve_system() . 16

3.1.2.7 sbls_information() . 17

3.1.2.8 sbls_terminate() . 18

4 Example Documentation 19

4.1 sblst.c . 19

4.2 sblstf.c . 21

Index 25

C interfaces to GALAHAD SBLS GALAHAD 4.0

Chapter 1

GALAHAD C package sbls

1.1 Introduction

1.1.1 Purpose

Given a block, symmetric matrix

KH =

(
H AT

A −C

)
,

this package constructs a variety of preconditioners of the form

KG =

(
G AT

A −C

)
.

Here, the leading-block matrix G is a suitably-chosen approximation to H ; it may either be prescribed explicitly,
in which case a symmetric indefinite factorization of KG will be formed using the GALAHAD symmetric matrix
factorization package SLS, or implicitly, by requiring certain sub-blocks of G be zero. In the latter case, a fac-
torization of KG will be obtained implicitly (and more efficiently) without recourse to SLS. In particular, for implicit
preconditioners, a reordering

KG = P

 G11 GT
21 AT

1

G21 G22 AT
2

A1 A2 −C

PT

involving a suitable permutation P will be found, for some invertible sub-block (`‘basis’') A1 of the columns of A;
the selection and factorization of A1 uses the GALAHAD unsymmetric matrix factorization package ULS. Once the
preconditioner has been constructed, solutions to the preconditioning system(

G AT

A −C

)(
x
y

)
=

(
a
b

)
may be obtained by the package. Full advantage is taken of any zero coefficients in the matrices H , A and C.

1.1.2 Authors

H. S. Dollar and N. I. M. Gould, STFC-Rutherford Appleton Laboratory, England.

C interface, additionally J. Fowkes, STFC-Rutherford Appleton Laboratory.

2 GALAHAD C package sbls

1.1.3 Originally released

April 2006, C interface November 2021.

1.1.4 Method

The method used depends on whether an explicit or implicit factorization is required. In the explicit case, the
package is really little more than a wrapper for the GALAHAD symmetric, indefinite linear solver SLS in which the
system matrix KG is assembled from its constituents A, C and whichever G is requested by the user. Implicit-
factorization preconditioners are more involved, and there is a large variety of different possibilities. The essential
ideas are described in detail in

H. S. Dollar, N. I. M. Gould and A. J. Wathen. `‘On implicit-factorization constraint preconditioners’'. In Large
Scale Nonlinear Optimization (G. Di Pillo and M. Roma, eds.) Springer Series on Nonconvex Optimization and Its
Applications, Vol. 83, Springer Verlag (2006) 61–82

and

H. S. Dollar, N. I. M. Gould, W. H. A. Schilders and A. J. Wathen `‘On iterative methods and implicit-factorization
preconditioners for regularized saddle-point systems’'. SIAM Journal on Matrix Analysis and Applications, 28(1)
(2006) 170–189.

The range-space factorization is based upon the decomposition

KG =

(
G 0
A I

)(
G−1 0
0 −S

)(
G AT

0 I

)
,

where the `‘Schur complement’' S = C + AG−1AT . Such a method requires that S is easily invertible. This is
often the case when G is a diagonal matrix, in which case S is frequently sparse, or when m� n in which case S
is small and a dense Cholesky factorization may be used.

When C = 0, the null-space factorization is based upon the decomposition

KG = P

 G11 0 I

G21 I AT
2 A
−T
1

A1 0 0

 0 0 I
0 R 0
I 0 −G11

 G11 GT
21 AT

1

0 I 0
I A−11 A2 0

PT ,

where the `‘reduced Hessian’'

R = (−AT
2 A
−T
1 I)

(
G11 GT

21

G21 G22

)(
−A−11 A2

I

)
and P is a suitably-chosen permutation for which A1 is invertible. The method is most useful when m ≈ n as then
the dimension of R is small and a dense Cholesky factorization may be used.

1.1.5 Call order

To solve a given problem, functions from the sbls package must be called in the following order:

• sbls_initialize - provide default control parameters and set up initial data structures

• sbls_read_specfile (optional) - override control values by reading replacement values from a file

• sbls_import - set up matrix data structures

• sbls_reset_control (optional) - possibly change control parameters if a sequence of problems are being solved

• sbls_factorize_matrix - form and factorize the block matrix from its components

• sbls_solve_system - solve the block linear system of equations

• sbls_information (optional) - recover information about the solution and solution process

• sbls_terminate - deallocate data structures

See Section 4.1 for examples of use.

GALAHAD 4.0 C interfaces to GALAHAD SBLS

1.1 Introduction 3

1.1.6 Unsymmetric matrix storage formats

The unsymmetric m by n constraint matrix A may be presented and stored in a variety of convenient input formats.

Both C-style (0 based) and fortran-style (1-based) indexing is allowed. Choose control.f_indexing as
false for C style and true for fortran style; the discussion below presumes C style, but add 1 to indices for the
corresponding fortran version.

Wrappers will automatically convert between 0-based (C) and 1-based (fortran) array indexing, so may be used
transparently from C. This conversion involves both time and memory overheads that may be avoided by supplying
data that is already stored using 1-based indexing.

1.1.6.1 Dense storage format

The matrix A is stored as a compact dense matrix by rows, that is, the values of the entries of each row in turn are
stored in order within an appropriate real one-dimensional array. In this case, component n ∗ i + j of the storage
array A_val will hold the value Aij for 0 ≤ i ≤ m− 1, 0 ≤ j ≤ n− 1.

1.1.6.2 Sparse co-ordinate storage format

Only the nonzero entries of the matrices are stored. For the l-th entry, 0 ≤ l ≤ ne− 1, of A, its row index i, column
index j and value Aij , 0 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 1, are stored as the l-th components of the integer arrays
A_row and A_col and real array A_val, respectively, while the number of nonzeros is recorded as A_ne = ne.

1.1.6.3 Sparse row-wise storage format

Again only the nonzero entries are stored, but this time they are ordered so that those in row i appear directly before
those in row i+1. For the i-th row of A the i-th component of the integer array A_ptr holds the position of the first
entry in this row, while A_ptr(m) holds the total number of entries plus one. The column indices j, 0 ≤ j ≤ n − 1,
and values Aij of the nonzero entries in the i-th row are stored in components l = A_ptr(i), . . ., A_ptr(i+1)-1,
0 ≤ i ≤ m − 1, of the integer array A_col, and real array A_val, respectively. For sparse matrices, this scheme
almost always requires less storage than its predecessor.

1.1.7 Symmetric matrix storage formats

Likewise, the symmetric n by nmatrixH , as well as them bymmatrix C, may be presented and stored in a variety
of formats. But crucially symmetry is exploited by only storing values from the lower triangular part (i.e, those entries
that lie on or below the leading diagonal). We focus on H , but everything we say applies equally to C.

1.1.7.1 Dense storage format

The matrix H is stored as a compact dense matrix by rows, that is, the values of the entries of each row in turn are
stored in order within an appropriate real one-dimensional array. Since H is symmetric, only the lower triangular
part (that is the part hij for 0 ≤ j ≤ i ≤ n − 1) need be held. In this case the lower triangle should be stored by
rows, that is component i ∗ i/2 + j of the storage array H_val will hold the value hij (and, by symmetry, hji) for
0 ≤ j ≤ i ≤ n− 1.

C interfaces to GALAHAD SBLS GALAHAD 4.0

4 GALAHAD C package sbls

1.1.7.2 Sparse co-ordinate storage format

Only the nonzero entries of the matrices are stored. For the l-th entry, 0 ≤ l ≤ ne− 1, of H , its row index i, column
index j and value hij , 0 ≤ j ≤ i ≤ n − 1, are stored as the l-th components of the integer arrays H_row and
H_col and real array H_val, respectively, while the number of nonzeros is recorded as H_ne = ne. Note that only
the entries in the lower triangle should be stored.

1.1.7.3 Sparse row-wise storage format

Again only the nonzero entries are stored, but this time they are ordered so that those in row i appear directly before
those in row i+1. For the i-th row of H the i-th component of the integer array H_ptr holds the position of the first
entry in this row, while H_ptr(n) holds the total number of entries plus one. The column indices j, 0 ≤ j ≤ i, and
values hij of the entries in the i-th row are stored in components l = H_ptr(i), . . ., H_ptr(i+1)-1 of the integer array
H_col, and real array H_val, respectively. Note that as before only the entries in the lower triangle should be stored.
For sparse matrices, this scheme almost always requires less storage than its predecessor.

1.1.7.4 Diagonal storage format

If H is diagonal (i.e., Hij = 0 for all 0 ≤ i 6= j ≤ n − 1) only the diagonals entries Hii, 0 ≤ i ≤ n − 1 need be
stored, and the first n components of the array H_val may be used for the purpose.

1.1.7.5 Multiples of the identity storage format

If H is a multiple of the identity matrix, (i.e., H = αI where I is the n by n identity matrix and α is a scalar), it
suffices to store α as the first component of H_val.

1.1.7.6 The identity matrix format

If H is the identity matrix, no values need be stored.

1.1.7.7 The zero matrix format

The same is true if H is the zero matrix.

GALAHAD 4.0 C interfaces to GALAHAD SBLS

Chapter 2

File Index

2.1 File List

Here is a list of all files with brief descriptions:

galahad_sbls.h . 7

6 File Index

GALAHAD 4.0 C interfaces to GALAHAD SBLS

Chapter 3

File Documentation

3.1 galahad_sbls.h File Reference

#include <stdbool.h>
#include "galahad_precision.h"
#include "galahad_sls.h"
#include "galahad_uls.h"

Data Structures

• struct sbls_control_type
• struct sbls_time_type
• struct sbls_inform_type

Functions

• void sbls_initialize (void ∗∗data, struct sbls_control_type ∗control, int ∗status)
• void sbls_read_specfile (struct sbls_control_type ∗control, const char specfile[])
• void sbls_import (struct sbls_control_type ∗control, void ∗∗data, int ∗status, int n, int m, const char H_type[],

int H_ne, const int H_row[], const int H_col[], const int H_ptr[], const char A_type[], int A_ne, const int A_←↩

row[], const int A_col[], const int A_ptr[], const char C_type[], int C_ne, const int C_row[], const int C_col[],
const int C_ptr[])

• void sbls_reset_control (struct sbls_control_type ∗control, void ∗∗data, int ∗status)
• void sbls_factorize_matrix (void ∗∗data, int ∗status, int n, int h_ne, const real_wp_ H_val[], int a_ne, const

real_wp_ A_val[], int c_ne, const real_wp_ C_val[], const real_wp_ D[])
• void sbls_solve_system (void ∗∗data, int ∗status, int n, int m, real_wp_ sol[])
• void sbls_information (void ∗∗data, struct sbls_inform_type ∗inform, int ∗status)
• void sbls_terminate (void ∗∗data, struct sbls_control_type ∗control, struct sbls_inform_type ∗inform)

3.1.1 Data Structure Documentation

3.1.1.1 struct sbls_control_type

control derived type as a C struct

Examples

sblst.c, and sblstf.c.

8 File Documentation

Data Fields

bool f_indexing use C or Fortran sparse matrix indexing

int error unit for error messages

int out unit for monitor output

int print_level controls level of diagnostic output

int indmin initial estimate of integer workspace for SLS
(obsolete)

int valmin initial estimate of real workspace for SLS
(obsolete)

int len_ulsmin initial estimate of workspace for ULS (obsolete)

int itref_max maximum number of iterative refinements with
preconditioner allowed

int maxit_pcg maximum number of projected CG iterations
allowed

int new_a how much has A changed since last factorization:
0 = not changed, 1 = values changed, 2 = structure
changed

int new_h how much has H changed since last factorization:
0 = not changed, 1 = values changed, 2 = structure
changed

int new_c how much has C changed since last factorization:
0 = not changed, 1 = values changed, 2 = structure
changed

int preconditioner which preconditioner to use:

• 0 selected automatically

• 1 explicit with G = I

• 2 explicit with G = H

• 3 explicit with G = diag(max(H ,min_diag))

• 4 explicit with G = band (H)

• 5 explicit with G = (optional, diagonal) D

• 11 explicit with G11 = 0, G21 = 0,
G22 = H22

• 12 explicit with G11 = 0, G21 = H21,
G22 = H22

• -1 implicit with G11 = 0, G21 = 0, G22 = I

• -2 implicit with G11 = 0, G21 = 0,
G22 = H22

int semi_bandwidth the semi-bandwidth for band(H)

GALAHAD 4.0 C interfaces to GALAHAD SBLS

3.1 galahad_sbls.h File Reference 9

Data Fields

int factorization the explicit factorization used:

• 0 selected automatically

• 1 Schur-complement if G is diagonal and
successful otherwise augmented system

• 2 augmented system

• 3 null-space

• 4 Schur-complement if G is diagonal and
successful otherwise failure

• 5 Schur-complement with pivoting if G is
diagonal and successful otherwise failure

int max_col maximum number of nonzeros in a column of A for
Schur-complement factorization

int scaling not used at present

int ordering see scaling

real_wp_ pivot_tol the relative pivot tolerance used by ULS (obsolete)

real_wp_ pivot_tol_for_basis the relative pivot tolerance used by ULS when
determining the basis matrix

real_wp_ zero_pivot the absolute pivot tolerance used by ULS
(obsolete)

real_wp_ static_tolerance not used at present

real_wp_ static_level see static_tolerance

real_wp_ min_diagonal the minimum permitted diagonal in diag(max(
H ,min_diag))

real_wp_ stop_absolute the required absolute and relative accuracies

real_wp_ stop_relative see stop_absolute

bool remove_dependencies preprocess equality constraints to remove linear
dependencies

bool find_basis_by_transpose determine implicit factorization preconditioners
using a basis of A found by examining A's
transpose

bool affine can the right-hand side c be assumed to be zero?

bool allow_singular do we tolerate "singular" preconditioners?

bool perturb_to_make_definite if the initial attempt at finding a preconditioner is
unsuccessful, should the diagonal be perturbed so
that a second attempt succeeds?

bool get_norm_residual compute the residual when applying the
preconditioner?

bool check_basis if an implicit or null-space preconditioner is used,
assess and correct for ill conditioned basis
matrices

bool space_critical if space is critical, ensure allocated arrays are no
bigger than needed

bool deallocate_error_fatal exit if any deallocation fails

char symmetric_linear_solver[31] indefinite linear equation solver

char definite_linear_solver[31] definite linear equation solver

char unsymmetric_linear_solver[31] unsymmetric linear equation solver

C interfaces to GALAHAD SBLS GALAHAD 4.0

10 File Documentation

Data Fields

char prefix[31] all output lines will be prefixed by
prefix(2:LEN(TRIM(.prefix))-1) where prefix
contains the required string enclosed in quotes,
e.g. "string" or 'string'

struct sls_control_type sls_control control parameters for SLS

struct uls_control_type uls_control control parameters for ULS

3.1.1.2 struct sbls_time_type

time derived type as a C struct

Data Fields

real_wp_ total total cpu time spent in the package

real_wp_ form cpu time spent forming the preconditioner KG

real_wp_ factorize cpu time spent factorizing KG

real_wp_ apply cpu time spent solving linear systems inolving KG

real_wp_ clock_total total clock time spent in the package

real_wp_ clock_form clock time spent forming the preconditioner KG

real_wp_ clock_factorize clock time spent factorizing KG

real_wp_ clock_apply clock time spent solving linear systems inolving KG

3.1.1.3 struct sbls_inform_type

inform derived type as a C struct

Examples

sblst.c, and sblstf.c.

Data Fields

int status return status. See SBLS_form_and_factorize for details
int alloc_status the status of the last attempted allocation/deallocation

char bad_alloc[81] the name of the array for which an allocation/deallocation
error ocurred

int sils_analyse_status obsolete return status from the factorization routines

int sils_factorize_status see sils_analyse_status

int sils_solve_status see sils_analyse_status

int sls_analyse_status see sils_analyse_status

int sls_factorize_status see sils_analyse_status

int sls_solve_status see sils_analyse_status

int uls_analyse_status see sils_analyse_status

int uls_factorize_status see sils_analyse_status

int uls_solve_status see sils_analyse_status

GALAHAD 4.0 C interfaces to GALAHAD SBLS

3.1 galahad_sbls.h File Reference 11

Data Fields

int sort_status the return status from the sorting routines

long int factorization_integer the total integer workspace required for the factorization

long int factorization_real the total real workspace required for the factorization

int preconditioner the preconditioner used

int factorization the factorization used
int d_plus how many of the diagonals in the factorization are positive

int rank the computed rank of A

bool rank_def is the matrix A rank defficient?
bool perturbed has the used preconditioner been perturbed to guarantee

correct inertia?
int iter_pcg the total number of projected CG iterations required

real_wp_ norm_residual the norm of the residual

bool alternative has an "alternative" y: Ky = 0 and yT c > 0 been found
when trying to solve Ky = c for generic K?

struct sbls_time_type time timings (see above)

struct sls_inform_type sls_inform inform parameters from the GALAHAD package SLS used

struct uls_inform_type uls_inform inform parameters from the GALAHAD package ULS used

3.1.2 Function Documentation

3.1.2.1 sbls_initialize()

void sbls_initialize (

void ∗∗ data,

struct sbls_control_type ∗ control,

int ∗ status)

Set default control values and initialize private data

Parameters

in,out data holds private internal data

out control is a struct containing control information (see sbls_control_type)

in,out status is a scalar variable of type int, that gives the exit status from the package. Possible
values are (currently):

• 0. The import was succesful.

Examples

sblst.c, and sblstf.c.

C interfaces to GALAHAD SBLS GALAHAD 4.0

12 File Documentation

3.1.2.2 sbls_read_specfile()

void sbls_read_specfile (

struct sbls_control_type ∗ control,

const char specfile[])

Read the content of a specification file, and assign values associated with given keywords to the corresponding
control parameters. By default, the spcification file will be named RUNSBLS.SPC and lie in the current directory.
Refer to Table 2.1 in the fortran documentation provided in $GALAHAD/doc/sbls.pdf for a list of keywords that may
be set.

Parameters

in,out control is a struct containing control information (see sbls_control_type)

in specfile is a character string containing the name of the specification file

3.1.2.3 sbls_import()

void sbls_import (

struct sbls_control_type ∗ control,

void ∗∗ data,

int ∗ status,

int n,

int m,

const char H_type[],

int H_ne,

const int H_row[],

const int H_col[],

const int H_ptr[],

const char A_type[],

int A_ne,

const int A_row[],

const int A_col[],

const int A_ptr[],

const char C_type[],

int C_ne,

const int C_row[],

const int C_col[],

const int C_ptr[])

Import structural matrix data into internal storage prior to solution.

Parameters

in control is a struct whose members provide control paramters for the remaining prcedures (see
sbls_control_type)

in,out data holds private internal data

GALAHAD 4.0 C interfaces to GALAHAD SBLS

3.1 galahad_sbls.h File Reference 13

Parameters

in,out status is a scalar variable of type int, that gives the exit status from the package. Possible
values are:

• 0. The import was succesful.

• -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -3. The restrictions n > 0 or m > 0 or requirement that a type contains its
relevant string 'dense', 'coordinate', 'sparse_by_rows', 'diagonal',
'scaled_identity', 'identity', 'zero' or 'none' has been violated.

in n is a scalar variable of type int, that holds the number of rows in the symmetric matrix H .

in m is a scalar variable of type int, that holds the number of rows in the symmetric matrix C.

in H_type is a one-dimensional array of type char that specifies the symmetric storage scheme
used for the matrix H . It should be one of 'coordinate', 'sparse_by_rows', 'dense',
'diagonal', 'scaled_identity', 'identity', 'zero' or 'none', the latter pair if H = 0; lower or
upper case variants are allowed.

in H_ne is a scalar variable of type int, that holds the number of entries in the lower triangular
part of H in the sparse co-ordinate storage scheme. It need not be set for any of the
other schemes.

in H_row is a one-dimensional array of size H_ne and type int, that holds the row indices of the
lower triangular part of H in the sparse co-ordinate storage scheme. It need not be set
for any of the other three schemes, and in this case can be NULL.

in H_col is a one-dimensional array of size H_ne and type int, that holds the column indices of
the lower triangular part of H in either the sparse co-ordinate, or the sparse row-wise
storage scheme. It need not be set when the dense, diagonal or (scaled) identity
storage schemes are used, and in this case can be NULL.

in H_ptr is a one-dimensional array of size n+1 and type int, that holds the starting position of
each row of the lower triangular part of H , as well as the total number of entries plus
one, in the sparse row-wise storage scheme. It need not be set when the other
schemes are used, and in this case can be NULL.

in A_type is a one-dimensional array of type char that specifies the symmetric storage scheme
used for the matrix A. It should be one of 'coordinate', 'sparse_by_rows', 'dense' or
'absent', the latter if access to the Jacobian is via matrix-vector products; lower or upper
case variants are allowed.

in A_ne is a scalar variable of type int, that holds the number of entries in A in the sparse
co-ordinate storage scheme. It need not be set for any of the other schemes.

in A_row is a one-dimensional array of size A_ne and type int, that holds the row indices of A in
the sparse co-ordinate storage scheme. It need not be set for any of the other
schemes, and in this case can be NULL.

in A_col is a one-dimensional array of size A_ne and type int, that holds the column indices of A
in either the sparse co-ordinate, or the sparse row-wise storage scheme. It need not be
set when the dense or diagonal storage schemes are used, and in this case can be
NULL.

in A_ptr is a one-dimensional array of size n+1 and type int, that holds the starting position of
each row of A, as well as the total number of entries plus one, in the sparse row-wise
storage scheme. It need not be set when the other schemes are used, and in this case
can be NULL.

C interfaces to GALAHAD SBLS GALAHAD 4.0

14 File Documentation

Parameters

in C_type is a one-dimensional array of type char that specifies the symmetric storage scheme
used for the matrix C. It should be one of 'coordinate', 'sparse_by_rows', 'dense',
'diagonal', 'scaled_identity', 'identity', 'zero' or 'none', the latter pair if C = 0; lower or
upper case variants are allowed.

in C_ne is a scalar variable of type int, that holds the number of entries in the lower triangular
part of C in the sparse co-ordinate storage scheme. It need not be set for any of the
other schemes.

in C_row is a one-dimensional array of size C_ne and type int, that holds the row indices of the
lower triangular part of C in the sparse co-ordinate storage scheme. It need not be set
for any of the other three schemes, and in this case can be NULL.

in C_col is a one-dimensional array of size C_ne and type int, that holds the column indices of
the lower triangular part of C in either the sparse co-ordinate, or the sparse row-wise
storage scheme. It need not be set when the dense, diagonal or (scaled) identity
storage schemes are used, and in this case can be NULL.

in C_ptr is a one-dimensional array of size n+1 and type int, that holds the starting position of
each row of the lower triangular part of C, as well as the total number of entries plus
one, in the sparse row-wise storage scheme. It need not be set when the other
schemes are used, and in this case can be NULL.

Examples

sblst.c, and sblstf.c.

3.1.2.4 sbls_reset_control()

void sbls_reset_control (

struct sbls_control_type ∗ control,

void ∗∗ data,

int ∗ status)

Reset control parameters after import if required.

Parameters

in control is a struct whose members provide control paramters for the remaining prcedures (see
sbls_control_type)

in,out data holds private internal data

in,out status is a scalar variable of type int, that gives the exit status from the package. Possible
values are:

• 0. The import was succesful.

3.1.2.5 sbls_factorize_matrix()

void sbls_factorize_matrix (

GALAHAD 4.0 C interfaces to GALAHAD SBLS

3.1 galahad_sbls.h File Reference 15

void ∗∗ data,

int ∗ status,

int n,

int h_ne,

const real_wp_ H_val[],

int a_ne,

const real_wp_ A_val[],

int c_ne,

const real_wp_ C_val[],

const real_wp_ D[])

Form and factorize the block matrix

KG =

(
G AT

A −C

)
for some appropriate matrix G.

Parameters

in,out data holds private internal data

out status is a scalar variable of type int, that gives the exit status from the package.
Possible values are:

• 0. The factors were generated succesfully.

• -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -3. The restrictions n > 0 and m > 0 or requirement that a type contains its
relevant string 'dense', 'coordinate', 'sparse_by_rows', 'diagonal', 'scaled_identity',
'identity', 'zero' or 'none' has been violated.

• -9. An error was reported by SLS analyse. The return status from SLS analyse is
given in inform.sls_inform.status. See the documentation for the GALAHAD
package SLS for further details.

• -10. An error was reported by SLS_factorize. The return status from SLS factorize
is given in inform.sls_inform.status. See the documentation for the GALAHAD
package SLS for further details.

• -13. An error was reported by ULS_factorize. The return status from
ULS_factorize is given in inform.uls_factorize_status. See the documentation for
the GALAHAD package ULS for further details.

• -15. The computed preconditioner KG is singular and is thus unsuitable.

• -20. The computed preconditioner KG has the wrong inertia and is thus
unsuitable.

• -24. An error was reported by the GALAHAD package SORT_reorder_by_rows.
The return status from SORT_reorder_by_rows is given in inform.sort_status. See
the documentation for the GALAHAD package SORT for further details.

in n is a scalar variable of type int, that holds the number of rows in the symmetric matrix H .

C interfaces to GALAHAD SBLS GALAHAD 4.0

16 File Documentation

Parameters

in h_ne is a scalar variable of type int, that holds the number of entries in the lower triangular
part of the symmetric matrix H .

in H_val is a one-dimensional array of size h_ne and type double, that holds the values of the
entries of the lower triangular part of the symmetric matrix H in any of the available
storage schemes

in a_ne is a scalar variable of type int, that holds the number of entries in the unsymmetric matrix
A.

in A_val is a one-dimensional array of size a_ne and type double, that holds the values of the
entries of the unsymmetric matrix A in any of the available storage schemes.

in c_ne is a scalar variable of type int, that holds the number of entries in the lower triangular
part of the symmetric matrix C.

in C_val is a one-dimensional array of size c_ne and type double, that holds the values of the
entries of the lower triangular part of the symmetric matrix C in any of the available
storage schemes

in D is a one-dimensional array of size n and type double, that holds the values of the entries
of the diagonal matrix D that is required if the user has specified control.preconditioner
= 5. It need not be set otherwise.

Examples

sblst.c, and sblstf.c.

3.1.2.6 sbls_solve_system()

void sbls_solve_system (

void ∗∗ data,

int ∗ status,

int n,

int m,

real_wp_ sol[])

Solve the block linear system (
G AT

A −C

)(
x
y

)
=

(
a
b

)
.

Parameters

in,out data holds private internal data

GALAHAD 4.0 C interfaces to GALAHAD SBLS

3.1 galahad_sbls.h File Reference 17

Parameters

in,out status is a scalar variable of type int, that gives the exit status from the package.
Possible values are:

• 0. The required solution was obtained.

• -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -11. An error was reported by SLS_solve. The return status from SLS solve is
given in inform.sls_inform.status. See the documentation for the GALAHAD
package SLS for further details.

• -14. An error was reported by ULS_solve. The return status from ULS_solve is
given in inform.uls_solve_status. See the documentation for the GALAHAD
package ULS for further details.

in n is a scalar variable of type int, that holds the number of entries in the vector a.

in m is a scalar variable of type int, that holds the number of entries in the vector b.

in,out sol is a one-dimensional array of size n + m and type double. on entry, its first n entries must
hold the vector a, and the following entries must hold the vector b. On a successful exit,
its first n entries contain the solution components x, and the following entries contain the
components y.

Examples

sblst.c, and sblstf.c.

3.1.2.7 sbls_information()

void sbls_information (

void ∗∗ data,

struct sbls_inform_type ∗ inform,

int ∗ status)

Provides output information

Parameters

in,out data holds private internal data

out inform is a struct containing output information (see sbls_inform_type)

out status is a scalar variable of type int, that gives the exit status from the package. Possible
values are (currently):

• 0. The values were recorded succesfully

C interfaces to GALAHAD SBLS GALAHAD 4.0

18 File Documentation

Examples

sblst.c, and sblstf.c.

3.1.2.8 sbls_terminate()

void sbls_terminate (

void ∗∗ data,

struct sbls_control_type ∗ control,

struct sbls_inform_type ∗ inform)

Deallocate all internal private storage

Parameters

in,out data holds private internal data

out control is a struct containing control information (see sbls_control_type)

out inform is a struct containing output information (see sbls_inform_type)

Examples

sblst.c, and sblstf.c.

GALAHAD 4.0 C interfaces to GALAHAD SBLS

Chapter 4

Example Documentation

4.1 sblst.c

This is an example of how to use the package.
A variety of supported matrix storage formats are illustrated.

Notice that C-style indexing is used, and that this is flaggeed by setting control.f_indexing to false.
/* sblst.c */
/* Full test for the SBLS C interface using C sparse matrix indexing */
#include <stdio.h>
#include <math.h>
#include "galahad_sbls.h"
int main(void) {

// Derived types
void *data;
struct sbls_control_type control;
struct sbls_inform_type inform;
// Set problem data
int n = 3; // dimension of H
int m = 2; // dimension of C
int H_ne = 4; // number of elements of H
int A_ne = 3; // number of elements of A
int C_ne = 3; // number of elements of C
int H_dense_ne = 6; // number of elements of H
int A_dense_ne = 6; // number of elements of A
int C_dense_ne = 3; // number of elements of C
int H_row[] = {0, 1, 2, 2}; // row indices, NB lower triangle
int H_col[] = {0, 1, 2, 0};
int H_ptr[] = {0, 1, 2, 4};
int A_row[] = {0, 0, 1};
int A_col[] = {0, 1, 2};
int A_ptr[] = {0, 2, 3};
int C_row[] = {0, 1, 1}; // row indices, NB lower triangle
int C_col[] = {0, 0, 1};
int C_ptr[] = {0, 1, 3};
double H_val[] = {1.0, 2.0, 3.0, 1.0};
double A_val[] = {2.0, 1.0, 1.0};
double C_val[] = {4.0, 1.0, 2.0};
double H_dense[] = {1.0, 0.0, 2.0, 1.0, 0.0, 3.0};
double A_dense[] = {2.0, 1.0, 0.0, 0.0, 0.0, 1.0};
double C_dense[] = {4.0, 1.0, 2.0};
double H_diag[] = {1.0, 1.0, 2.0};
double C_diag[] = {4.0, 2.0};
double H_scid[] = {2.0};
double C_scid[] = {2.0};
char st;
int status;
printf(" C sparse matrix indexing\n\n");
printf(" basic tests of storage formats\n\n");
for(int d=1; d <= 7; d++){

// Initialize SBLS
sbls_initialize(&data, &control, &status);
control.preconditioner = 2;
control.factorization = 2;

20 Example Documentation

control.get_norm_residual = true;
// Set user-defined control options
control.f_indexing = false; // C sparse matrix indexing
switch(d){

case 1: // sparse co-ordinate storage
st = ’C’;
sbls_import(&control, &data, &status, n, m,

"coordinate", H_ne, H_row, H_col, NULL,
"coordinate", A_ne, A_row, A_col, NULL,
"coordinate", C_ne, C_row, C_col, NULL);

sbls_factorize_matrix(&data, &status, n,
H_ne, H_val,
A_ne, A_val,
C_ne, C_val, NULL);

break;
printf(" case %1i break\n",d);
case 2: // sparse by rows

st = ’R’;
sbls_import(&control, &data, &status, n, m,

"sparse_by_rows", H_ne, NULL, H_col, H_ptr,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr,
"sparse_by_rows", C_ne, NULL, C_col, C_ptr);

sbls_factorize_matrix(&data, &status, n,
H_ne, H_val,
A_ne, A_val,
C_ne, C_val, NULL);

break;
case 3: // dense

st = ’D’;
sbls_import(&control, &data, &status, n, m,

"dense", H_ne, NULL, NULL, NULL,
"dense", A_ne, NULL, NULL, NULL,
"dense", C_ne, NULL, NULL, NULL);

sbls_factorize_matrix(&data, &status, n,
H_dense_ne, H_dense,
A_dense_ne, A_dense,
C_dense_ne, C_dense,
NULL);

break;
case 4: // diagonal

st = ’L’;
sbls_import(&control, &data, &status, n, m,

"diagonal", H_ne, NULL, NULL, NULL,
"dense", A_ne, NULL, NULL, NULL,
"diagonal", C_ne, NULL, NULL, NULL);

sbls_factorize_matrix(&data, &status, n,
n, H_diag,
A_dense_ne, A_dense,
m, C_diag,
NULL);

break;
case 5: // scaled identity

st = ’S’;
sbls_import(&control, &data, &status, n, m,

"scaled_identity", H_ne, NULL, NULL, NULL,
"dense", A_ne, NULL, NULL, NULL,
"scaled_identity", C_ne, NULL, NULL, NULL);

sbls_factorize_matrix(&data, &status, n,
1, H_scid,
A_dense_ne, A_dense,
1, C_scid,
NULL);

break;
case 6: // identity

st = ’I’;
sbls_import(&control, &data, &status, n, m,

"identity", H_ne, NULL, NULL, NULL,
"dense", A_ne, NULL, NULL, NULL,
"identity", C_ne, NULL, NULL, NULL);

sbls_factorize_matrix(&data, &status, n,
0, H_val,
A_dense_ne, A_dense,
0, C_val, NULL);

break;
case 7: // zero

st = ’Z’;
sbls_import(&control, &data, &status, n, m,

"identity", H_ne, NULL, NULL, NULL,
"dense", A_ne, NULL, NULL, NULL,
"zero", C_ne, NULL, NULL, NULL);

sbls_factorize_matrix(&data, &status, n,
0, H_val,
A_dense_ne, A_dense,
0, NULL, NULL);

break;
}

// Set right-hand side (a, b)

GALAHAD 4.0 C interfaces to GALAHAD SBLS

4.2 sblstf.c 21

double sol[] = {3.0, 2.0, 4.0, 2.0, 0.0}; // values
sbls_solve_system(&data, &status, n, m, sol);
sbls_information(&data, &inform, &status);
if(inform.status == 0){

printf("%c: residual = %9.1e status = %1i\n",
st, inform.norm_residual, inform.status);

}else{
printf("%c: SBLS_solve exit status = %1i\n", st, inform.status);

}
//printf("sol: ");
//for(int i = 0; i < n+m; i++) printf("%f ", x[i]);
// Delete internal workspace
sbls_terminate(&data, &control, &inform);

}
}

4.2 sblstf.c

This is the same example, but now fortran-style indexing is used.

/* sblstf.c */
/* Full test for the SBLS C interface using Fortran sparse matrix indexing */
#include <stdio.h>
#include <math.h>
#include "galahad_sbls.h"
int main(void) {

// Derived types
void *data;
struct sbls_control_type control;
struct sbls_inform_type inform;
// Set problem data
int n = 3; // dimension of H
int m = 2; // dimension of C
int H_ne = 4; // number of elements of H
int A_ne = 3; // number of elements of A
int C_ne = 3; // number of elements of C
int H_dense_ne = 6; // number of elements of H
int A_dense_ne = 6; // number of elements of A
int C_dense_ne = 3; // number of elements of C
int H_row[] = {1, 2, 3, 3}; // row indices, NB lower triangle
int H_col[] = {1, 2, 3, 1};
int H_ptr[] = {1, 2, 3, 5};
int A_row[] = {1, 1, 2};
int A_col[] = {1, 2, 3};
int A_ptr[] = {1, 3, 4};
int C_row[] = {1, 2, 2}; // row indices, NB lower triangle
int C_col[] = {1, 1, 2};
int C_ptr[] = {1, 2, 4};
double H_val[] = {1.0, 2.0, 3.0, 1.0};
double A_val[] = {2.0, 1.0, 1.0};
double C_val[] = {4.0, 1.0, 2.0};
double H_dense[] = {1.0, 0.0, 2.0, 1.0, 0.0, 3.0};
double A_dense[] = {2.0, 1.0, 0.0, 0.0, 0.0, 1.0};
double C_dense[] = {4.0, 1.0, 2.0};
double H_diag[] = {1.0, 1.0, 2.0};
double C_diag[] = {4.0, 2.0};
double H_scid[] = {2.0};
double C_scid[] = {2.0};
char st;
int status;
printf(" Fortran sparse matrix indexing\n\n");
printf(" basic tests of storage formats\n\n");
for(int d=1; d <= 7; d++){

// Initialize SBLS
sbls_initialize(&data, &control, &status);
control.preconditioner = 2;
control.factorization = 2;
control.get_norm_residual = true;
// Set user-defined control options
control.f_indexing = true; // fortran sparse matrix indexing
switch(d){

case 1: // sparse co-ordinate storage
st = ’C’;
sbls_import(&control, &data, &status, n, m,

"coordinate", H_ne, H_row, H_col, NULL,
"coordinate", A_ne, A_row, A_col, NULL,
"coordinate", C_ne, C_row, C_col, NULL);

sbls_factorize_matrix(&data, &status, n,
H_ne, H_val,
A_ne, A_val,
C_ne, C_val, NULL);

C interfaces to GALAHAD SBLS GALAHAD 4.0

22 Example Documentation

break;
printf(" case %1i break\n",d);
case 2: // sparse by rows

st = ’R’;
sbls_import(&control, &data, &status, n, m,

"sparse_by_rows", H_ne, NULL, H_col, H_ptr,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr,
"sparse_by_rows", C_ne, NULL, C_col, C_ptr);

sbls_factorize_matrix(&data, &status, n,
H_ne, H_val,
A_ne, A_val,
C_ne, C_val, NULL);

break;
case 3: // dense

st = ’D’;
sbls_import(&control, &data, &status, n, m,

"dense", H_ne, NULL, NULL, NULL,
"dense", A_ne, NULL, NULL, NULL,
"dense", C_ne, NULL, NULL, NULL);

sbls_factorize_matrix(&data, &status, n,
H_dense_ne, H_dense,
A_dense_ne, A_dense,
C_dense_ne, C_dense,
NULL);

break;
case 4: // diagonal

st = ’L’;
sbls_import(&control, &data, &status, n, m,

"diagonal", H_ne, NULL, NULL, NULL,
"dense", A_ne, NULL, NULL, NULL,
"diagonal", C_ne, NULL, NULL, NULL);

sbls_factorize_matrix(&data, &status, n,
n, H_diag,
A_dense_ne, A_dense,
m, C_diag,
NULL);

break;
case 5: // scaled identity

st = ’S’;
sbls_import(&control, &data, &status, n, m,

"scaled_identity", H_ne, NULL, NULL, NULL,
"dense", A_ne, NULL, NULL, NULL,
"scaled_identity", C_ne, NULL, NULL, NULL);

sbls_factorize_matrix(&data, &status, n,
1, H_scid,
A_dense_ne, A_dense,
1, C_scid,
NULL);

break;
case 6: // identity

st = ’I’;
sbls_import(&control, &data, &status, n, m,

"identity", H_ne, NULL, NULL, NULL,
"dense", A_ne, NULL, NULL, NULL,
"identity", C_ne, NULL, NULL, NULL);

sbls_factorize_matrix(&data, &status, n,
0, H_val,
A_dense_ne, A_dense,
0, C_val, NULL);

break;
case 7: // zero

st = ’Z’;
sbls_import(&control, &data, &status, n, m,

"identity", H_ne, NULL, NULL, NULL,
"dense", A_ne, NULL, NULL, NULL,
"zero", C_ne, NULL, NULL, NULL);

sbls_factorize_matrix(&data, &status, n,
0, H_val,
A_dense_ne, A_dense,
0, NULL, NULL);

break;
}

// Set right-hand side (a, b)
double sol[] = {3.0, 2.0, 4.0, 2.0, 0.0}; // values
sbls_solve_system(&data, &status, n, m, sol);
sbls_information(&data, &inform, &status);
if(inform.status == 0){

printf("%c: residual = %9.1e status = %1i\n",
st, inform.norm_residual, inform.status);

}else{
printf("%c: SBLS_solve exit status = %1i\n", st, inform.status);

}
//printf("sol: ");
//for(int i = 0; i < n+m; i++) printf("%f ", x[i]);
// Delete internal workspace
sbls_terminate(&data, &control, &inform);

}

GALAHAD 4.0 C interfaces to GALAHAD SBLS

4.2 sblstf.c 23

}

C interfaces to GALAHAD SBLS GALAHAD 4.0

24 Example Documentation

GALAHAD 4.0 C interfaces to GALAHAD SBLS

Index

galahad_sbls.h, 7
sbls_factorize_matrix, 14
sbls_import, 12
sbls_information, 17
sbls_initialize, 11
sbls_read_specfile, 11
sbls_reset_control, 14
sbls_solve_system, 16
sbls_terminate, 18

sbls_control_type, 7
sbls_factorize_matrix

galahad_sbls.h, 14
sbls_import

galahad_sbls.h, 12
sbls_inform_type, 10
sbls_information

galahad_sbls.h, 17
sbls_initialize

galahad_sbls.h, 11
sbls_read_specfile

galahad_sbls.h, 11
sbls_reset_control

galahad_sbls.h, 14
sbls_solve_system

galahad_sbls.h, 16
sbls_terminate

galahad_sbls.h, 18
sbls_time_type, 10

	1 GALAHAD C package sbls
	1.1 Introduction
	1.1.1 Purpose
	1.1.2 Authors
	1.1.3 Originally released
	1.1.4 Method
	1.1.5 Call order
	1.1.6 Unsymmetric matrix storage formats
	1.1.6.1 Dense storage format
	1.1.6.2 Sparse co-ordinate storage format
	1.1.6.3 Sparse row-wise storage format

	1.1.7 Symmetric matrix storage formats
	1.1.7.1 Dense storage format
	1.1.7.2 Sparse co-ordinate storage format
	1.1.7.3 Sparse row-wise storage format
	1.1.7.4 Diagonal storage format
	1.1.7.5 Multiples of the identity storage format
	1.1.7.6 The identity matrix format
	1.1.7.7 The zero matrix format

	2 File Index
	2.1 File List

	3 File Documentation
	3.1 galahad_sbls.h File Reference
	3.1.1 Data Structure Documentation
	3.1.1.1 struct sbls_control_type
	3.1.1.2 struct sbls_time_type
	3.1.1.3 struct sbls_inform_type

	3.1.2 Function Documentation
	3.1.2.1 sbls_initialize()
	3.1.2.2 sbls_read_specfile()
	3.1.2.3 sbls_import()
	3.1.2.4 sbls_reset_control()
	3.1.2.5 sbls_factorize_matrix()
	3.1.2.6 sbls_solve_system()
	3.1.2.7 sbls_information()
	3.1.2.8 sbls_terminate()

	4 Example Documentation
	4.1 sblst.c
	4.2 sblstf.c

	Index

