
C interfaces to GALAHAD PSLS

Jari Fowkes and Nick Gould

STFC Rutherford Appleton Laboratory

Sat Mar 26 2022

i

1 GALAHAD C package psls 1

1.1 Introduction . 1

1.1.1 Purpose . 1

1.1.2 Authors . 1

1.1.3 Originally released . 1

1.1.4 Method and references . 1

1.1.5 Call order . 2

1.1.6 Symmetric matrix storage formats . 3

1.1.6.1 Dense storage format . 3

1.1.6.2 Sparse co-ordinate storage format . 3

1.1.6.3 Sparse row-wise storage format . 3

2 File Index 5

2.1 File List . 5

3 File Documentation 7

3.1 galahad_psls.h File Reference . 7

3.1.1 Data Structure Documentation . 7

3.1.1.1 struct psls_control_type . 7

3.1.1.2 struct psls_time_type . 9

3.1.1.3 struct psls_inform_type . 10

3.1.2 Function Documentation . 11

3.1.2.1 psls_initialize() . 11

3.1.2.2 psls_read_specfile() . 11

3.1.2.3 psls_import() . 12

3.1.2.4 psls_reset_control() . 13

3.1.2.5 psls_form_preconditioner() . 13

3.1.2.6 psls_form_subset_preconditioner() . 14

3.1.2.7 psls_update_preconditioner() . 15

3.1.2.8 psls_apply_preconditioner() . 16

3.1.2.9 psls_information() . 17

3.1.2.10 psls_terminate() . 17

4 Example Documentation 19

4.1 pslst.c . 19

Index 21

C interfaces to GALAHAD PSLS GALAHAD 4.0

Chapter 1

GALAHAD C package psls

1.1 Introduction

1.1.1 Purpose

Given an n by n sparse symmetric matrix A = aij , this package builds a suitable symmetric, positive definite
(or diagonally dominant)-preconditioner P of A or a symmetric sub-matrix thereof. The matrix A need not
be definite. Facilities are provided to apply the preconditioner to a given vector, and to remove rows and columns
(symmetrically) from the initial preconditioner without a full re-factorization.

1.1.2 Authors

N. I. M. Gould, STFC-Rutherford Appleton Laboratory, England.

C interface, additionally J. Fowkes, STFC-Rutherford Appleton Laboratory.

1.1.3 Originally released

April 2008, C interface January 2022.

1.1.4 Method and references

The basic preconditioners are described in detail in Section 3.3.10 of

A. R. Conn, N. I. M. Gould and Ph. L. Toint (1992). LANCELOT. A fortran package for large-scale nonlinear
optimization (release A). Springer Verlag Series in Computational Mathematics 17, Berlin,

along with the more modern versions implements in ICFS due to

C.-J. Lin and J. J. More' (1999). Incomplete Cholesky factorizations with limited memory. SIAM Journal on Scientific
Computing 21 21-45,

and in HSL_MI28 described by

J. A. Scott and M. Tuma (2013). HSL MI28: an efficient and robust limited-memory incomplete Cholesky factorization
code. ACM Transactions on Mathematical Software 40(4) (2014), Article 24.

The factorization methods used by the GALAHAD package SLS in conjunction with some preconditioners are de-
scribed in the documentation to that package. The key features of the external solvers supported by SLS are given
in the following table.

2 GALAHAD C package psls

Table 1.1 External solver characteristics

solver factorization indefinite A out-of-core parallelised

SILS/MA27 multifrontal yes no no

HSL_MA57 multifrontal yes no no

HSL_MA77 multifrontal yes yes OpenMP core

HSL_MA86 left-looking yes no OpenMP fully

HSL_MA87 left-looking no no OpenMP fully

HSL_MA97 multifrontal yes no OpenMP core

SSIDS multifrontal yes no CUDA core

PARDISO left-right-looking yes no OpenMP fully

MKL_PARDISO left-right-looking yes optionally OpenMP fully

WSMP left-right-looking yes no OpenMP fully

POTR dense no no with parallel LAPACK

SYTR dense yes no with parallel LAPACK

PBTR dense band no no with parallel LAPACK

Note that the solvers themselves do not form part of this package and must be obtained separately. Dummy
instances are provided for solvers that are unavailable.

Orderings to reduce the bandwidth, as implemented in HSL's MC61, are due to

J. K. Reid and J. A. Scott (1999) Ordering symmetric sparse matrices for small profile and wavefront International
Journal for Numerical Methods in Engineering 45 1737-1755.

If a subset of the rows and columns are specified, the remaining rows/columns are removed before processing. Any
subsequent removal of rows and columns is achieved using the GALAHAD Schur-complement updating package
SCU unless a complete re-factorization is likely more efficient.

1.1.5 Call order

To solve a given problem, functions from the psls package must be called in the following order:

• psls_initialize - provide default control parameters and set up initial data structures

• psls_read_specfile (optional) - override control values by reading replacement values from a file

• psls_import - set up matrix data structures for A prior to solution

• psls_reset_control (optional) - possibly change control parameters if a sequence of problems are being solved

• one of

– psls_form_preconditioner - form and factorize a preconditioner P of the matrix A

– psls_form_subset_preconditioner - form and factorize a preconditioner P of a symmetric submatrix of
the matrix A

• psls_update_preconditioner (optional) - update the preconditioner P when rows (amd columns) are removed

• psls_apply_preconditioner - solve the linear system of equations Px = b

• psls_information (optional) - recover information about the preconditioner and solution process

• psls_terminate - deallocate data structures

See Section ?? for examples of use.

GALAHAD 4.0 C interfaces to GALAHAD PSLS

1.1 Introduction 3

1.1.6 Symmetric matrix storage formats

The symmetric n by n coefficient matrix A may be presented and stored in a variety of convenient input formats.
Crucially symmetry is exploited by only storing values from the lower triangular part (i.e, those entries that lie on or
below the leading diagonal).

Both C-style (0 based) and fortran-style (1-based) indexing is allowed. Choose control.f_indexing as
false for C style and true for fortran style; the discussion below presumes C style, but add 1 to indices for the
corresponding fortran version.

Wrappers will automatically convert between 0-based (C) and 1-based (fortran) array indexing, so may be used
transparently from C. This conversion involves both time and memory overheads that may be avoided by supplying
data that is already stored using 1-based indexing.

1.1.6.1 Dense storage format

The matrix A is stored as a compact dense matrix by rows, that is, the values of the entries of each row in turn are
stored in order within an appropriate real one-dimensional array. Since A is symmetric, only the lower triangular
part (that is the part Aij for 0 ≤ j ≤ i ≤ n − 1) need be held. In this case the lower triangle should be stored
by rows, that is component i ∗ i/2 + j of the storage array val will hold the value Aij (and, by symmetry, Aji) for
0 ≤ j ≤ i ≤ n− 1.

1.1.6.2 Sparse co-ordinate storage format

Only the nonzero entries of the matrices are stored. For the l-th entry, 0 ≤ l ≤ ne− 1, of A, its row index i, column
index j and value Aij , 0 ≤ j ≤ i ≤ n− 1, are stored as the l-th components of the integer arrays row and col and
real array val, respectively, while the number of nonzeros is recorded as ne = ne. Note that only the entries in the
lower triangle should be stored.

1.1.6.3 Sparse row-wise storage format

Again only the nonzero entries are stored, but this time they are ordered so that those in row i appear directly before
those in row i+1. For the i-th row of A the i-th component of the integer array ptr holds the position of the first entry
in this row, while ptr(n) holds the total number of entries plus one. The column indices j, 0 ≤ j ≤ i, and values Aij

of the entries in the i-th row are stored in components l = ptr(i), . . ., ptr(i+1)-1 of the integer array col, and real array
val, respectively. Note that as before only the entries in the lower triangle should be stored. For sparse matrices,
this scheme almost always requires less storage than its predecessor.

C interfaces to GALAHAD PSLS GALAHAD 4.0

4 GALAHAD C package psls

GALAHAD 4.0 C interfaces to GALAHAD PSLS

Chapter 2

File Index

2.1 File List

Here is a list of all files with brief descriptions:

galahad_psls.h . 7

6 File Index

GALAHAD 4.0 C interfaces to GALAHAD PSLS

Chapter 3

File Documentation

3.1 galahad_psls.h File Reference

#include <stdbool.h>
#include "galahad_precision.h"
#include "galahad_sls.h"
#include "hsl_mi28.h"

Data Structures

• struct psls_control_type
• struct psls_time_type
• struct psls_inform_type

Functions

• void psls_initialize (void ∗∗data, struct psls_control_type ∗control, int ∗status)
• void psls_read_specfile (struct psls_control_type ∗control, const char specfile[])
• void psls_import (struct psls_control_type ∗control, void ∗∗data, int ∗status, int n, const char type[], int ne,

const int row[], const int col[], const int ptr[])
• void psls_reset_control (struct psls_control_type ∗control, void ∗∗data, int ∗status)
• void psls_form_preconditioner (void ∗∗data, int ∗status, int ne, const real_wp_ val[])
• void psls_form_subset_preconditioner (void ∗∗data, int ∗status, int ne, const real_wp_ val[], int n_sub, const

int sub[])
• void psls_update_preconditioner (void ∗∗data, int ∗status, int ne, const real_wp_ val[], int n_del, const int

del[])
• void psls_apply_preconditioner (void ∗∗data, int ∗status, int n, real_wp_ sol[])
• void psls_information (void ∗∗data, struct psls_inform_type ∗inform, int ∗status)
• void psls_terminate (void ∗∗data, struct psls_control_type ∗control, struct psls_inform_type ∗inform)

3.1.1 Data Structure Documentation

3.1.1.1 struct psls_control_type

control derived type as a C struct

Examples

pslst.c.

8 File Documentation

Data Fields

bool f_indexing use C or Fortran sparse matrix indexing

int error unit for error messages

int out unit for monitor output

int print_level controls level of diagnostic output

int preconditioner which preconditioner to use:

• <0 no preconditioning occurs, P = I

• 0 the preconditioner is chosen automatically
(forthcoming, and currently defaults to 1).

• 1 A is replaced by the diagonal, P = diag(max(
A, .min_diagonal)).

• 2 A is replaced by the band P = band(A) with
semi-bandwidth .semi_bandwidth.

• 3 A is replaced by the reordered band P = band(
order(A)) with semi-bandwidth .semi_bandwidth,
where order is chosen by the HSL package MC61
to move entries closer to the diagonal.

• 4 P is a full factorization of A using
Schnabel-Eskow modifications, in which small or
negative diagonals are made sensibly positive
during the factorization.

• 5 P is a full factorization of A due to Gill, Murray,
Ponceleon and Saunders, in which an indefinite
factorization is altered to give a positive definite
one.

• 6 P is an incomplete Cholesky factorization of A
using the package ICFS due to Lin and More'.

• 7 P is an incomplete factorization of A
implemented as HSL_MI28 from HSL.

• 8 P is an incomplete factorization of A due to
Munskgaard (forthcoming).

• >8 treated as 0.

N.B. Options 3-8 may require additional external
software that is not part of the package, and that must
be obtained separately.

int semi_bandwidth the semi-bandwidth for band(H) when .preconditioner =
2,3

int scaling not used at present

int ordering see scaling

int max_col maximum number of nonzeros in a column of A for
Schur-complement factorization to accommodate newly
deleted rpws and columns

int icfs_vectors number of extra vectors of length n required by the
Lin-More' incomplete Cholesky preconditioner when
.preconditioner = 6

GALAHAD 4.0 C interfaces to GALAHAD PSLS

3.1 galahad_psls.h File Reference 9

Data Fields

int mi28_lsize the maximum number of fill entries within each column of
the incomplete factor L computed by HSL_MI28 when
.preconditioner = 7. In general, increasing mi28_lsize
improve the quality of the preconditioner but increases
the time to compute and then apply the preconditioner.
Values less than 0 are treated as 0

int mi28_rsize the maximum number of entries within each column of
the strictly lower triangular matrix R used in the
computation of the preconditioner by HSL_MI28 when
.preconditioner = 7. Rank-1 arrays of size .mi28_rsize ∗
n are allocated internally to hold R. Thus the amount of
memory used, as well as the amount of work involved in
computing the preconditioner, depends on mi28_rsize.
Setting mi28_rsize > 0 generally leads to a higher
quality preconditioner than using mi28_rsize = 0, and
choosing mi28_rsize >= mi28_lsize is generally
recommended

real_wp_ min_diagonal the minimum permitted diagonal in
diag(max(H,.min_diagonal))

bool new_structure set new_structure true if the storage structure for the
input matrix has changed, and false if only the values
have changed

bool get_semi_bandwidth set get_semi_bandwidth true if the semi-bandwidth of
the submatrix is to be calculated

bool get_norm_residual set get_norm_residual true if the residual when applying
the preconditioner are to be calculated

bool space_critical if space is critical, ensure allocated arrays are no bigger
than needed

bool deallocate_error_fatal exit if any deallocation fails

char definite_linear_solver[31] the definite linear equation solver used when
.preconditioner = 3,4. Possible choices are currently:
sils, ma27, ma57, ma77, ma86, ma87, ma97, ssids,
pardiso, mkl_pardiso, wsmp, potr and pbtr, although only
sils, potr, pbtr and, for OMP 4.0-compliant compilers,
ssids are installed by default.

char prefix[31] all output lines will be prefixed by
prefix(2:LEN(TRIM(.prefix))-1) where prefix contains the
required string enclosed in quotes, e.g. "string" or 'string'

struct sls_control_type sls_control control parameters for SLS

struct mi28_control mi28_control control parameters for HSL_MI28

3.1.1.2 struct psls_time_type

time derived type as a C struct

Data Fields

real_sp_ total total time

real_sp_ assemble time to assemble the preconditioner prior to factorization

real_sp_ analyse time for the analysis phase

real_sp_ factorize time for the factorization phase

C interfaces to GALAHAD PSLS GALAHAD 4.0

10 File Documentation

Data Fields

real_sp_ solve time for the linear solution phase

real_sp_ update time to update the factorization

real_wp_ clock_total total clock time spent in the package

real_wp_ clock_assemble clock time to assemble the preconditioner prior to factorization

real_wp_ clock_analyse clock time for the analysis phase

real_wp_ clock_factorize clock time for the factorization phase

real_wp_ clock_solve clock time for the linear solution phase

real_wp_ clock_update clock time to update the factorization

3.1.1.3 struct psls_inform_type

inform derived type as a C struct

Examples

pslst.c.

Data Fields

int status reported return status:

• 0 success

• -1 allocation error

• -2 deallocation error

• -3 matrix data faulty (.n < 1, .ne < 0)

int alloc_status STAT value after allocate failure.
int analyse_status status return from factorization

int factorize_status status return from factorization
int solve_status status return from solution phase

int factorization_integer number of integer words to hold factors

int factorization_real number of real words to hold factors
int preconditioner code for the actual preconditioner used (see

control.preconditioner)

int semi_bandwidth the actual semi-bandwidth
int reordered_semi_bandwidth the semi-bandwidth following reordering (if any)

int out_of_range number of indices out-of-range

int duplicates number of duplicates

int upper number of entries from the strict upper triangle

int missing_diagonals number of missing diagonal entries for an
allegedly-definite matrix

int semi_bandwidth_used the semi-bandwidth used
int neg1 number of 1 by 1 pivots in the factorization

int neg2 number of 2 by 2 pivots in the factorization

bool perturbed has the preconditioner been perturbed during the
fctorization?

real_wp_ fill_in_ratio ratio of fill in to original nonzeros

GALAHAD 4.0 C interfaces to GALAHAD PSLS

3.1 galahad_psls.h File Reference 11

Data Fields

real_wp_ norm_residual the norm of the solution residual

char bad_alloc[81] name of array which provoked an allocate failure

int mc61_info[10] the integer and real output arrays from mc61

real_wp_ mc61_rinfo[15] see mc61_info

struct psls_time_type time times for various stages

struct sls_inform_type sls_inform inform values from SLS

struct mi28_info mi28_info the output structure from mi28

3.1.2 Function Documentation

3.1.2.1 psls_initialize()

void psls_initialize (

void ∗∗ data,

struct psls_control_type ∗ control,

int ∗ status)

Set default control values and initialize private data

Parameters

in,out data holds private internal data

out control is a struct containing control information (see psls_control_type)

out status is a scalar variable of type int, that gives the exit status from the package. Possible
values are (currently):

• 0. The import was succesful.

Examples

pslst.c.

3.1.2.2 psls_read_specfile()

void psls_read_specfile (

struct psls_control_type ∗ control,

const char specfile[])

Read the content of a specification file, and assign values associated with given keywords to the corresponding
control parameters. By default, the spcification file will be named RUNPSLS.SPC and lie in the current directory.
Refer to Table 2.1 in the fortran documentation provided in $GALAHAD/doc/psls.pdf for a list of keywords that may
be set.

C interfaces to GALAHAD PSLS GALAHAD 4.0

12 File Documentation

Parameters

in,out control is a struct containing control information (see psls_control_type)

in specfile is a character string containing the name of the specification file

3.1.2.3 psls_import()

void psls_import (

struct psls_control_type ∗ control,

void ∗∗ data,

int ∗ status,

int n,

const char type[],

int ne,

const int row[],

const int col[],

const int ptr[])

Import structural matrix data into internal storage prior to solution.

Parameters

in control is a struct whose members provide control paramters for the remaining prcedures (see
psls_control_type)

in,out data holds private internal data

in,out status is a scalar variable of type int, that gives the exit status from the package. Possible
values are:

• 1. The import was succesful, and the package is ready for the solve phase

• -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -3. The restriction n > 0 or requirement that type contains its relevant string
'dense', 'coordinate', 'sparse_by_rows' or 'diagonal' has been violated.

in n is a scalar variable of type int, that holds the number of rows in the symmetric matrix A.

in type is a one-dimensional array of type char that specifies the symmetric storage scheme
used for the matrix A. It should be one of 'coordinate', 'sparse_by_rows' or 'dense';
lower or upper case variants are allowed.

in ne is a scalar variable of type int, that holds the number of entries in the lower triangular
part of A in the sparse co-ordinate storage scheme. It need not be set for any of the
other schemes.

in row is a one-dimensional array of size ne and type int, that holds the row indices of the lower
triangular part of A in the sparse co-ordinate storage scheme. It need not be set for any
of the other three schemes, and in this case can be NULL.

GALAHAD 4.0 C interfaces to GALAHAD PSLS

3.1 galahad_psls.h File Reference 13

Parameters

in col is a one-dimensional array of size ne and type int, that holds the column indices of the
lower triangular part of A in either the sparse co-ordinate, or the sparse row-wise
storage scheme. It need not be set when the dense storage scheme is used, and in this
case can be NULL.

in ptr is a one-dimensional array of size n+1 and type int, that holds the starting position of
each row of the lower triangular part of A, as well as the total number of entries plus
one, in the sparse row-wise storage scheme. It need not be set when the other
schemes are used, and in this case can be NULL.

Examples

pslst.c.

3.1.2.4 psls_reset_control()

void psls_reset_control (

struct psls_control_type ∗ control,

void ∗∗ data,

int ∗ status)

Reset control parameters after import if required.

Parameters

in control is a struct whose members provide control paramters for the remaining prcedures (see
psls_control_type)

in,out data holds private internal data

in,out status is a scalar variable of type int, that gives the exit status from the package. Possible
values are:

• 1. The import was succesful, and the package is ready for the solve phase

3.1.2.5 psls_form_preconditioner()

void psls_form_preconditioner (

void ∗∗ data,

int ∗ status,

int ne,

const real_wp_ val[])

Form and factorize a preconditioner P of the matrix A.

C interfaces to GALAHAD PSLS GALAHAD 4.0

14 File Documentation

Parameters

in,out data holds private internal data

out status is a scalar variable of type int, that gives the exit status from the package.
Possible values are:

• 0. The factors were generated succesfully.

• -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -26. The requested solver is not available.

• -29. This option is not available with this solver.

in ne is a scalar variable of type int, that holds the number of entries in the lower triangular
part of the symmetric matrix A.

in val is a one-dimensional array of size ne and type double, that holds the values of the
entries of the lower triangular part of the symmetric matrix A in any of the supported
storage schemes.

Examples

pslst.c.

3.1.2.6 psls_form_subset_preconditioner()

void psls_form_subset_preconditioner (

void ∗∗ data,

int ∗ status,

int ne,

const real_wp_ val[],

int n_sub,

const int sub[])

Form and factorize a P preconditioner of a symmetric submatrix of the matrix A.

Parameters

in,out data holds private internal data

GALAHAD 4.0 C interfaces to GALAHAD PSLS

3.1 galahad_psls.h File Reference 15

Parameters

out status is a scalar variable of type int, that gives the exit status from the package.
Possible values are:

• 0. The factors were generated succesfully.

• -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -26. The requested solver is not available.

• -29. This option is not available with this solver.

in ne is a scalar variable of type int, that holds the number of entries in the lower triangular
part of the symmetric matrix A.

in val is a one-dimensional array of size ne and type double, that holds the values of the
entries of the lower triangular part of the symmetric matrix A in any of the supported
storage schemes.

in n_sub is a scalar variable of type int, that holds the number of rows (and columns) of the
required submatrix of A.

in sub is a one-dimensional array of size n_sub and type int, that holds the indices of the rows
of required submatrix.

3.1.2.7 psls_update_preconditioner()

void psls_update_preconditioner (

void ∗∗ data,

int ∗ status,

int ne,

const real_wp_ val[],

int n_del,

const int del[])

Update the preconditioner P when rows (amd columns) are removed.

Parameters

in,out data holds private internal data

C interfaces to GALAHAD PSLS GALAHAD 4.0

16 File Documentation

Parameters

out status is a scalar variable of type int, that gives the exit status from the package.
Possible values are:

• 0. The factors were generated succesfully.

• -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -26. The requested solver is not available.

• -29. This option is not available with this solver.

in ne is a scalar variable of type int, that holds the number of entries in the lower triangular
part of the symmetric matrix A.

in val is a one-dimensional array of size ne and type double, that holds the values of the
entries of the lower triangular part of the symmetric matrix A in any of the supported
storage schemes.

in n_del is a scalar variable of type int, that holds the number of rows (and columns) of (sub)
matrix that are to be deleted.

in del is a one-dimensional array of size n_fix and type int, that holds the indices of the rows
that are to be deleted.

3.1.2.8 psls_apply_preconditioner()

void psls_apply_preconditioner (

void ∗∗ data,

int ∗ status,

int n,

real_wp_ sol[])

Solve the linear system Px = b.

Parameters

in,out data holds private internal data

in,out status is a scalar variable of type int, that gives the exit status from the package.
Possible values are:

• 0. The required solution was obtained.

• -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.GALAHAD 4.0 C interfaces to GALAHAD PSLS

3.1 galahad_psls.h File Reference 17

Parameters

in n is a scalar variable of type int, that holds the number of entries in the vectors b and x.

in,out sol is a one-dimensional array of size n and type double. On entry, it must hold the vector b.
On a successful exit, its contains the solution x. Any component corresponding to
rows/columns not in the initial subset recorded by psls_form_subset_preconditioner, or
in those subsequently deleted by psls_update_preconditioner, will not be altered.

Examples

pslst.c.

3.1.2.9 psls_information()

void psls_information (

void ∗∗ data,

struct psls_inform_type ∗ inform,

int ∗ status)

Provide output information

Parameters

in,out data holds private internal data

out inform is a struct containing output information (see psls_inform_type)

out status is a scalar variable of type int, that gives the exit status from the package. Possible
values are (currently):

• 0. The values were recorded succesfully

Examples

pslst.c.

3.1.2.10 psls_terminate()

void psls_terminate (

void ∗∗ data,

struct psls_control_type ∗ control,

struct psls_inform_type ∗ inform)

Deallocate all internal private storage

C interfaces to GALAHAD PSLS GALAHAD 4.0

18 File Documentation

Parameters

in,out data holds private internal data

out control is a struct containing control information (see psls_control_type)

out inform is a struct containing output information (see psls_inform_type)

Examples

pslst.c.

GALAHAD 4.0 C interfaces to GALAHAD PSLS

Chapter 4

Example Documentation

4.1 pslst.c

This is an example of how to use the package.

/* pslst.c */
/* Full test for the PSLS C interface using C sparse matrix indexing */
#include <stdio.h>
#include <math.h>
#include <string.h>
#include "galahad_psls.h"
int main(void) {

// Derived types
void *data;
struct psls_control_type control;
struct psls_inform_type inform;
// Set problem data
int n = 5; // dimension of A
int ne = 7; // number of elements of A
int dense_ne = n * (n + 1) / 2; // number of elements of dense A
int row[] = {0, 1, 1, 2, 2, 3, 4}; // A indices & values, NB lower triangle
int col[] = {0, 0, 4, 1, 2, 2, 4};
int ptr[] = {0, 1, 3, 5, 6, 7};
double val[] = {2.0, 3.0, 6.0, 4.0, 1.0, 5.0, 1.0};
double dense[] = {2.0, 3.0, 0.0, 0.0, 4.0, 1.0, 0.0,

0.0, 5.0, 0.0, 0.0, 6.0, 0.0, 0.0, 1.0};
char st;
int status;
int status_apply;
printf(" C sparse matrix indexing\n\n");
printf(" basic tests of storage formats\n\n");
for(int d=1; d <= 3; d++){

// Initialize PSLS
psls_initialize(&data, &control, &status);
control.preconditioner = 2; // band preconditioner
control.semi_bandwidth = 1; // semibandwidth
strcpy(control.definite_linear_solver, "sils");
// Set user-defined control options
control.f_indexing = false; // C sparse matrix indexing
switch(d){

case 1: // sparse co-ordinate storage
st = ’C’;
psls_import(&control, &data, &status, n,

"coordinate", ne, row, col, NULL);
psls_form_preconditioner(&data, &status, ne, val);
break;

printf(" case %1i break\n",d);
case 2: // sparse by rows

st = ’R’;
psls_import(&control, &data, &status, n,

"sparse_by_rows", ne, NULL, col, ptr);
psls_form_preconditioner(&data, &status, ne, val);
break;

case 3: // dense
st = ’D’;
psls_import(&control, &data, &status, n,

"dense", ne, NULL, NULL, NULL);
psls_form_preconditioner(&data, &status, dense_ne, dense);

20 Example Documentation

break;
}

// Set right-hand side b in x
double x[] = {8.0, 45.0, 31.0, 15.0, 17.0}; // values
if(status == 0){
psls_information(&data, &inform, &status);
psls_apply_preconditioner(&data, &status_apply, n, x);

}else{
status_apply = - 1;

}
printf("%c storage: status from form & factorize = %i apply = %i\n",

st, status, status_apply);
//printf("x: ");
//for(int i = 0; i < n; i++) printf("%f ", x[i]);
// Delete internal workspace
psls_terminate(&data, &control, &inform);

}
}

GALAHAD 4.0 C interfaces to GALAHAD PSLS

Index

galahad_psls.h, 7
psls_apply_preconditioner, 16
psls_form_preconditioner, 13
psls_form_subset_preconditioner, 14
psls_import, 12
psls_information, 17
psls_initialize, 11
psls_read_specfile, 11
psls_reset_control, 13
psls_terminate, 17
psls_update_preconditioner, 15

psls_apply_preconditioner
galahad_psls.h, 16

psls_control_type, 7
psls_form_preconditioner

galahad_psls.h, 13
psls_form_subset_preconditioner

galahad_psls.h, 14
psls_import

galahad_psls.h, 12
psls_inform_type, 10
psls_information

galahad_psls.h, 17
psls_initialize

galahad_psls.h, 11
psls_read_specfile

galahad_psls.h, 11
psls_reset_control

galahad_psls.h, 13
psls_terminate

galahad_psls.h, 17
psls_time_type, 9
psls_update_preconditioner

galahad_psls.h, 15

	1 GALAHAD C package psls
	1.1 Introduction
	1.1.1 Purpose
	1.1.2 Authors
	1.1.3 Originally released
	1.1.4 Method and references
	1.1.5 Call order
	1.1.6 Symmetric matrix storage formats
	1.1.6.1 Dense storage format
	1.1.6.2 Sparse co-ordinate storage format
	1.1.6.3 Sparse row-wise storage format

	2 File Index
	2.1 File List

	3 File Documentation
	3.1 galahad_psls.h File Reference
	3.1.1 Data Structure Documentation
	3.1.1.1 struct psls_control_type
	3.1.1.2 struct psls_time_type
	3.1.1.3 struct psls_inform_type

	3.1.2 Function Documentation
	3.1.2.1 psls_initialize()
	3.1.2.2 psls_read_specfile()
	3.1.2.3 psls_import()
	3.1.2.4 psls_reset_control()
	3.1.2.5 psls_form_preconditioner()
	3.1.2.6 psls_form_subset_preconditioner()
	3.1.2.7 psls_update_preconditioner()
	3.1.2.8 psls_apply_preconditioner()
	3.1.2.9 psls_information()
	3.1.2.10 psls_terminate()

	4 Example Documentation
	4.1 pslst.c

	Index

