
C interfaces to GALAHAD EQP

Jari Fowkes and Nick Gould

STFC Rutherford Appleton Laboratory

Sat Mar 26 2022

i

1 GALAHAD C package eqp 1

1.1 Introduction . 1

1.1.1 Purpose . 1

1.1.2 Authors . 1

1.1.3 Originally released . 1

1.1.4 Terminology . 2

1.1.5 Method . 2

1.1.6 Reference . 2

1.1.7 Call order . 3

1.1.8 Unsymmetric matrix storage formats . 3

1.1.8.1 Dense storage format . 3

1.1.8.2 Sparse co-ordinate storage format . 3

1.1.8.3 Sparse row-wise storage format . 4

1.1.9 Symmetric matrix storage formats . 4

1.1.9.1 Dense storage format . 4

1.1.9.2 Sparse co-ordinate storage format . 4

1.1.9.3 Sparse row-wise storage format . 4

1.1.9.4 Diagonal storage format . 4

1.1.9.5 Multiples of the identity storage format . 4

1.1.9.6 The identity matrix format . 4

2 File Index 5

2.1 File List . 5

3 File Documentation 7

3.1 galahad_eqp.h File Reference . 7

3.1.1 Data Structure Documentation . 7

3.1.1.1 struct eqp_control_type . 7

3.1.1.2 struct eqp_time_type . 9

3.1.1.3 struct eqp_inform_type . 10

3.1.2 Function Documentation . 10

3.1.2.1 eqp_initialize() . 10

3.1.2.2 eqp_read_specfile() . 11

3.1.2.3 eqp_import() . 11

3.1.2.4 eqp_reset_control() . 13

3.1.2.5 eqp_solve_qp() . 13

3.1.2.6 eqp_solve_sldqp() . 15

3.1.2.7 eqp_resolve_qp() . 17

3.1.2.8 eqp_information() . 18

3.1.2.9 eqp_terminate() . 19

4 Example Documentation 21

4.1 eqpt.c . 21

C interfaces to GALAHAD EQP GALAHAD 4.0

ii

4.2 eqptf.c . 23

Index 27

GALAHAD 4.0 C interfaces to GALAHAD EQP

Chapter 1

GALAHAD C package eqp

1.1 Introduction

1.1.1 Purpose

This package uses an iterative method to solve the equality-constrained quadratic programming problem

minimize q(x) =
1

2
xTHx+ gTx+ f

subject to the linear constraints
(1) Ax+ c = 0,

where the n by n symmetric matrix H , the m by n matrix A, the vectors g and c Full advantage is taken of any zero
coefficients in the matrices H and A.

The package may alternatively be used to minimize the (shifted) squared- least-distance objective

1

2

n∑
j=1

w2
j (xj − x0j)2 + gTx+ f,

subject to the linear constraint (1), for given vectors w and x0.

1.1.2 Authors

N. I. M. Gould, STFC-Rutherford Appleton Laboratory, England.

C interface, additionally J. Fowkes, STFC-Rutherford Appleton Laboratory.

1.1.3 Originally released

March 2006, C interface January 2021.

2 GALAHAD C package eqp

1.1.4 Terminology

The required solution x necessarily satisfies the primal optimality conditions

(2) Ax+ c = 0

and the dual optimality conditions

Hx+ g −AT y = 0 (or W 2(x− x0) + g −AT y = 0 for the shifted-least-distance type objective)

where the diagonal matrix W 2 has diagonal entries w2
j , j = 1, . . . , n, and where the vector y is known as the

Lagrange multipliers for the linear constraints.

1.1.5 Method

A solution to the problem is found in two phases. In the first, a point xF satisfying (2) is found. In the second, the
required solution x = xF + s is determined by finding s to minimize q(s) = 1

2s
THs + gTF s + fF subject to the

homogeneous constraints As = zero, where gF = HxF + g and fF = 1
2x

T
FHxF + gTxF + f . The required

constrained minimizer of q(s) is obtained by implictly applying the preconditioned conjugate-gradient method in the
null space of A. Any preconditioner of the form

KG =

(
G AT

A 0

)
is suitable, and the GALAHAD package SBLS provides a number of possibilities. In order to ensure that the
minimizer obtained is finite, an additional, precautionary trust-region constraint ‖s‖ ≤ ∆ for some suitable positive
radius ∆ is imposed, and the GALAHAD package GLTR is used to solve this additionally-constrained problem.

1.1.6 Reference

The preconditioning aspcets are described in detail in

H. S. Dollar, N. I. M. Gould and A. J. Wathen. `‘On implicit-factorization constraint preconditioners’'. In Large
Scale Nonlinear Optimization (G. Di Pillo and M. Roma, eds.) Springer Series on Nonconvex Optimization and Its
Applications, Vol. 83, Springer Verlag (2006) 61-82

and

H. S. Dollar, N. I. M. Gould, W. H. A. Schilders and A. J. Wathen `‘On iterative methods and implicit-factorization
preconditioners for regularized saddle-point systems’'. SIAM Journal on Matrix Analysis and Applications, 28(1)
(2006) 170-189,

while the constrained conjugate-gradient method is discussed in

N. I. M. Gould, S. Lucidi, M. Roma and Ph. L. Toint, Solving the trust-region subproblem using the Lanczos method.
SIAM Journal on Optimization 9:2 (1999), 504-525.

GALAHAD 4.0 C interfaces to GALAHAD EQP

1.1 Introduction 3

1.1.7 Call order

To solve a given problem, functions from the eqp package must be called in the following order:

• eqp_initialize - provide default control parameters and set up initial data structures

• eqp_read_specfile (optional) - override control values by reading replacement values from a file

• eqp_import - set up problem data structures and fixed values

• eqp_reset_control (optional) - possibly change control parameters if a sequence of problems are being solved

• solve the problem by calling one of

– eqp_solve_qp - solve the quadratic program

– eqp_solve_sldqp - solve the shifted least-distance problem

• eqp_resolve_qp (optional) - resolve the problem with the same Hessian and Jacobian, but different g, f and/or
c

• eqp_information (optional) - recover information about the solution and solution process

• eqp_terminate - deallocate data structures

See Section 4.1 for examples of use.

1.1.8 Unsymmetric matrix storage formats

The unsymmetric m by n constraint matrix A may be presented and stored in a variety of convenient input formats.

Both C-style (0 based) and fortran-style (1-based) indexing is allowed. Choose control.f_indexing as
false for C style and true for fortran style; the discussion below presumes C style, but add 1 to indices for the
corresponding fortran version.

Wrappers will automatically convert between 0-based (C) and 1-based (fortran) array indexing, so may be used
transparently from C. This conversion involves both time and memory overheads that may be avoided by supplying
data that is already stored using 1-based indexing.

1.1.8.1 Dense storage format

The matrix A is stored as a compact dense matrix by rows, that is, the values of the entries of each row in turn are
stored in order within an appropriate real one-dimensional array. In this case, component n ∗ i + j of the storage
array A_val will hold the value Aij for 0 ≤ i ≤ m− 1, 0 ≤ j ≤ n− 1.

1.1.8.2 Sparse co-ordinate storage format

Only the nonzero entries of the matrices are stored. For the l-th entry, 0 ≤ l ≤ ne− 1, of A, its row index i, column
index j and value Aij , 0 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 1, are stored as the l-th components of the integer arrays
A_row and A_col and real array A_val, respectively, while the number of nonzeros is recorded as A_ne = ne.

C interfaces to GALAHAD EQP GALAHAD 4.0

4 GALAHAD C package eqp

1.1.8.3 Sparse row-wise storage format

Again only the nonzero entries are stored, but this time they are ordered so that those in row i appear directly before
those in row i+1. For the i-th row of A the i-th component of the integer array A_ptr holds the position of the first
entry in this row, while A_ptr(m) holds the total number of entries plus one. The column indices j, 0 ≤ j ≤ n − 1,
and values Aij of the nonzero entries in the i-th row are stored in components l = A_ptr(i), . . ., A_ptr(i+1)-1,
0 ≤ i ≤ m − 1, of the integer array A_col, and real array A_val, respectively. For sparse matrices, this scheme
almost always requires less storage than its predecessor.

1.1.9 Symmetric matrix storage formats

Likewise, the symmetric n by n objective Hessian matrix H may be presented and stored in a variety of formats.
But crucially symmetry is exploited by only storing values from the lower triangular part (i.e, those entries that lie on
or below the leading diagonal).

1.1.9.1 Dense storage format

The matrix H is stored as a compact dense matrix by rows, that is, the values of the entries of each row in turn are
stored in order within an appropriate real one-dimensional array. Since H is symmetric, only the lower triangular
part (that is the part hij for 0 ≤ j ≤ i ≤ n − 1) need be held. In this case the lower triangle should be stored by
rows, that is component i ∗ i/2 + j of the storage array H_val will hold the value hij (and, by symmetry, hji) for
0 ≤ j ≤ i ≤ n− 1.

1.1.9.2 Sparse co-ordinate storage format

Only the nonzero entries of the matrices are stored. For the l-th entry, 0 ≤ l ≤ ne− 1, of H , its row index i, column
index j and value hij , 0 ≤ j ≤ i ≤ n − 1, are stored as the l-th components of the integer arrays H_row and
H_col and real array H_val, respectively, while the number of nonzeros is recorded as H_ne = ne. Note that only
the entries in the lower triangle should be stored.

1.1.9.3 Sparse row-wise storage format

Again only the nonzero entries are stored, but this time they are ordered so that those in row i appear directly before
those in row i+1. For the i-th row of H the i-th component of the integer array H_ptr holds the position of the first
entry in this row, while H_ptr(n) holds the total number of entries plus one. The column indices j, 0 ≤ j ≤ i, and
values hij of the entries in the i-th row are stored in components l = H_ptr(i), . . ., H_ptr(i+1)-1 of the integer array
H_col, and real array H_val, respectively. Note that as before only the entries in the lower triangle should be stored.
For sparse matrices, this scheme almost always requires less storage than its predecessor.

1.1.9.4 Diagonal storage format

If H is diagonal (i.e., Hij = 0 for all 0 ≤ i 6= j ≤ n − 1) only the diagonals entries Hii, 0 ≤ i ≤ n − 1 need be
stored, and the first n components of the array H_val may be used for the purpose.

1.1.9.5 Multiples of the identity storage format

If H is a multiple of the identity matrix, (i.e., H = αI where I is the n by n identity matrix and α is a scalar), it
suffices to store α as the first component of H_val.

1.1.9.6 The identity matrix format

If H is the identity matrix, no values need be stored.

GALAHAD 4.0 C interfaces to GALAHAD EQP

Chapter 2

File Index

2.1 File List

Here is a list of all files with brief descriptions:

galahad_eqp.h . 7

6 File Index

GALAHAD 4.0 C interfaces to GALAHAD EQP

Chapter 3

File Documentation

3.1 galahad_eqp.h File Reference

#include <stdbool.h>
#include "galahad_precision.h"
#include "galahad_fdc.h"
#include "galahad_sbls.h"
#include "galahad_gltr.h"

Data Structures
• struct eqp_control_type
• struct eqp_time_type
• struct eqp_inform_type

Functions
• void eqp_initialize (void ∗∗data, struct eqp_control_type ∗control, int ∗status)
• void eqp_read_specfile (struct eqp_control_type ∗control, const char specfile[])
• void eqp_import (struct eqp_control_type ∗control, void ∗∗data, int ∗status, int n, int m, const char H_type[],

int H_ne, const int H_row[], const int H_col[], const int H_ptr[], const char A_type[], int A_ne, const int
A_row[], const int A_col[], const int A_ptr[])

• void eqp_reset_control (struct eqp_control_type ∗control, void ∗∗data, int ∗status)
• void eqp_solve_qp (void ∗∗data, int ∗status, int n, int m, int h_ne, const real_wp_ H_val[], const real_wp_

g[], const real_wp_ f, int a_ne, const real_wp_ A_val[], real_wp_ c[], real_wp_ x[], real_wp_ y[])
• void eqp_solve_sldqp (void ∗∗data, int ∗status, int n, int m, const real_wp_ w[], const real_wp_ x0[], const

real_wp_ g[], const real_wp_ f, int a_ne, const real_wp_ A_val[], real_wp_ c[], real_wp_ x[], real_wp_ y[])
• void eqp_resolve_qp (void ∗∗data, int ∗status, int n, int m, const real_wp_ g[], const real_wp_ f, real_wp_ c[],

real_wp_ x[], real_wp_ y[])
• void eqp_information (void ∗∗data, struct eqp_inform_type ∗inform, int ∗status)
• void eqp_terminate (void ∗∗data, struct eqp_control_type ∗control, struct eqp_inform_type ∗inform)

3.1.1 Data Structure Documentation

3.1.1.1 struct eqp_control_type

control derived type as a C struct

Examples

eqpt.c, and eqptf.c.

8 File Documentation

Data Fields

bool f_indexing use C or Fortran sparse matrix indexing

int error error and warning diagnostics occur on stream error

int out general output occurs on stream out

int print_level the level of output required is specified by print_level

int factorization the factorization to be used. Possible values are 0
automatic 1 Schur-complement factorization 2
augmented-system factorization (OBSOLETE

int max_col the maximum number of nonzeros in a column of A
which is permitted with the Schur-complement
factorization (OBSOLE

int indmin an initial guess as to the integer workspace required
by SBLS (OBSOL

int valmin an initial guess as to the real workspace required by
SBLS (OBSOL

int len_ulsmin an initial guess as to the workspace required by ULS
(OBSOL

int itref_max the maximum number of iterative refinements allowed
(OBSOL

int cg_maxit the maximum number of CG iterations allowed. If
cg_maxit < 0, this number will be reset to the
dimension of the system + 1

int preconditioner the preconditioner to be used for the CG is defined by
precon. Possible values are 0 automatic 1 no
preconditioner, i.e, the identity within full factorization
2 full factorization 3 band within full factorization 4
diagonal using the barrier terms within full factorization
(OBSOLETE 5 optionally supplied diagonal, G = D

int semi_bandwidth the semi-bandwidth of a band preconditioner, if
appropriate (OBSOL

int new_a how much has A changed since last problem solved:
0 = not changed, 1 = values changed, 2 = structure
changed

int new_h how much has H changed since last problem solved:
0 = not changed, 1 = values changed, 2 = structure
changed

int sif_file_device specifies the unit number to write generated SIF file
describing the current problem

real_wp_ pivot_tol the threshold pivot used by the matrix factorization.
See the documentation for SBLS for details (OBSOLE

real_wp_ pivot_tol_for_basis the threshold pivot used by the matrix factorization
when finding the ba See the documentation for ULS
for details (OBSOLE

real_wp_ zero_pivot any pivots smaller than zero_pivot in absolute value
will be regarded to zero when attempting to detect
linearly dependent constraints (OBSOLE

real_wp_ inner_fraction_opt the computed solution which gives at least
inner_fraction_opt times the optimal value will be
found (OBSOLE

real_wp_ radius an upper bound on the permitted step (-ve will be
reset to an appropriat large value by eqp_solve)

real_wp_ min_diagonal diagonal preconditioners will have diagonals no
smaller than min_diagona (OBSOLETE)

GALAHAD 4.0 C interfaces to GALAHAD EQP

3.1 galahad_eqp.h File Reference 9

Data Fields

real_wp_ max_infeasibility_relative if the constraints are believed to be rank defficient and
the residual at a "typical" feasible point is larger than
max(max_infeasibility_relative ∗ norm A,
max_infeasibility_absolute) the problem will be
marked as infeasible

real_wp_ max_infeasibility_absolute see max_infeasibility_relative

real_wp_ inner_stop_relative the computed solution is considered as an acceptable
approximation to th minimizer of the problem if the
gradient of the objective in the
preconditioning(inverse) norm is less than max(
inner_stop_relative ∗ initial preconditioning(inverse)
gradient norm, inner_stop_absolute)

real_wp_ inner_stop_absolute see inner_stop_relative

real_wp_ inner_stop_inter see inner_stop_relative

bool find_basis_by_transpose if .find_basis_by_transpose is true, implicit
factorization precondition will be based on a basis of A
found by examining A's transpose (OBSOLE

bool remove_dependencies if .remove_dependencies is true, the equality
constraints will be preprocessed to remove any linear
dependencies

bool space_critical if .space_critical true, every effort will be made to use
as little space as possible. This may result in longer
computation time

bool deallocate_error_fatal if .deallocate_error_fatal is true, any array/pointer
deallocation error will terminate execution. Otherwise,
computation will continue

bool generate_sif_file if .generate_sif_file is .true. if a SIF file describing the
current problem is to be generated

char sif_file_name[31] name of generated SIF file containing input problem

char prefix[31] all output lines will be prefixed by
.prefix(2:LEN(TRIM(.prefix))-1) where .prefix contains
the required string enclosed in quotes, e.g. "string" or
'string'

struct fdc_control_type fdc_control control parameters for FDC

struct sbls_control_type sbls_control control parameters for SBLS

struct gltr_control_type gltr_control control parameters for GLTR

3.1.1.2 struct eqp_time_type

time derived type as a C struct

Data Fields

real_wp_ total the total CPU time spent in the package

real_wp_ find_dependent the CPU time spent detecting linear dependencies

real_wp_ factorize the CPU time spent factorizing the required matrices

real_wp_ solve the CPU time spent computing the search direction

real_wp_ solve_inter see solve

real_wp_ clock_total the total clock time spent in the package

C interfaces to GALAHAD EQP GALAHAD 4.0

10 File Documentation

Data Fields

real_wp_ clock_find_dependent the clock time spent detecting linear dependencies

real_wp_ clock_factorize the clock time spent factorizing the required matrices

real_wp_ clock_solve the clock time spent computing the search direction

3.1.1.3 struct eqp_inform_type

inform derived type as a C struct

Examples

eqpt.c, and eqptf.c.

Data Fields

int status return status. See EQP_solve for details
int alloc_status the status of the last attempted allocation/deallocation

char bad_alloc[81] the name of the array for which an allocation/deallocation
error ocurred

int cg_iter the total number of conjugate gradient iterations required

int cg_iter_inter see cg_iter

int factorization_integer the total integer workspace required for the factorization

int factorization_real the total real workspace required for the factorization

real_wp_ obj the value of the objective function at the best estimate of the
solution determined by QPB_solve

struct eqp_time_type time timings (see above)

struct fdc_inform_type fdc_inform inform parameters for FDC

struct sbls_inform_type sbls_inform inform parameters for SBLS

struct gltr_inform_type gltr_inform return information from GLTR

3.1.2 Function Documentation

3.1.2.1 eqp_initialize()

void eqp_initialize (

void ∗∗ data,

struct eqp_control_type ∗ control,

int ∗ status)

Set default control values and initialize private data

Parameters

in,out data holds private internal data

GALAHAD 4.0 C interfaces to GALAHAD EQP

3.1 galahad_eqp.h File Reference 11

Parameters

out control is a struct containing control information (see eqp_control_type)

out status is a scalar variable of type int, that gives the exit status from the package. Possible
values are (currently):

• 0. The import was succesful.

Examples

eqpt.c, and eqptf.c.

3.1.2.2 eqp_read_specfile()

void eqp_read_specfile (

struct eqp_control_type ∗ control,

const char specfile[])

Read the content of a specification file, and assign values associated with given keywords to the corresponding
control parameters. By default, the spcification file will be named RUNEQP.SPC and lie in the current directory.
Refer to Table 2.1 in the fortran documentation provided in $GALAHAD/doc/eqp.pdf for a list of keywords that may
be set.

Parameters

in,out control is a struct containing control information (see eqp_control_type)

in specfile is a character string containing the name of the specification file

3.1.2.3 eqp_import()

void eqp_import (

struct eqp_control_type ∗ control,

void ∗∗ data,

int ∗ status,

int n,

int m,

const char H_type[],

int H_ne,

const int H_row[],

const int H_col[],

const int H_ptr[],

const char A_type[],

int A_ne,

const int A_row[],

const int A_col[],

const int A_ptr[])

Import problem data into internal storage prior to solution.

C interfaces to GALAHAD EQP GALAHAD 4.0

12 File Documentation

Parameters

in control is a struct whose members provide control paramters for the remaining prcedures (see
eqp_control_type)

in,out data holds private internal data

in,out status is a scalar variable of type int, that gives the exit status from the package. Possible
values are:

• 0. The import was succesful

• -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -3. The restrictions n > 0 or m > 0 or requirement that a type contains its
relevant string 'dense', 'coordinate', 'sparse_by_rows', 'diagonal',
'scaled_identity', 'identity', 'zero' or 'none' has been violated.

• -23. An entry from the strict upper triangle of H has been specified.

in n is a scalar variable of type int, that holds the number of variables.

in m is a scalar variable of type int, that holds the number of general linear constraints.

in H_type is a one-dimensional array of type char that specifies the symmetric storage scheme
used for the Hessian, H . It should be one of 'coordinate', 'sparse_by_rows', 'dense',
'diagonal', 'scaled_identity', 'identity', 'zero' or 'none', the latter pair if H = 0; lower or
upper case variants are allowed.

in H_ne is a scalar variable of type int, that holds the number of entries in the lower triangular
part of H in the sparse co-ordinate storage scheme. It need not be set for any of the
other schemes.

in H_row is a one-dimensional array of size H_ne and type int, that holds the row indices of the
lower triangular part of H in the sparse co-ordinate storage scheme. It need not be set
for any of the other three schemes, and in this case can be NULL.

in H_col is a one-dimensional array of size H_ne and type int, that holds the column indices of
the lower triangular part of H in either the sparse co-ordinate, or the sparse row-wise
storage scheme. It need not be set when the dense, diagonal or (scaled) identity
storage schemes are used, and in this case can be NULL.

in H_ptr is a one-dimensional array of size n+1 and type int, that holds the starting position of
each row of the lower triangular part of H , as well as the total number of entries plus
one, in the sparse row-wise storage scheme. It need not be set when the other
schemes are used, and in this case can be NULL.

in A_type is a one-dimensional array of type char that specifies the unsymmetric storage scheme
used for the constraint Jacobian, A. It should be one of 'coordinate', 'sparse_by_rows'
or 'dense; lower or upper case variants are allowed.

in A_ne is a scalar variable of type int, that holds the number of entries in A in the sparse
co-ordinate storage scheme. It need not be set for any of the other schemes.

in A_row is a one-dimensional array of size A_ne and type int, that holds the row indices of A in
the sparse co-ordinate storage scheme. It need not be set for any of the other
schemes, and in this case can be NULL.

in A_col is a one-dimensional array of size A_ne and type int, that holds the column indices of A
in either the sparse co-ordinate, or the sparse row-wise storage scheme. It need not be
set when the dense or diagonal storage schemes are used, and in this case can be
NULL.

GALAHAD 4.0 C interfaces to GALAHAD EQP

3.1 galahad_eqp.h File Reference 13

Parameters

in A_ptr is a one-dimensional array of size n+1 and type int, that holds the starting position of
each row of A, as well as the total number of entries plus one, in the sparse row-wise
storage scheme. It need not be set when the other schemes are used, and in this case
can be NULL.

Examples

eqpt.c, and eqptf.c.

3.1.2.4 eqp_reset_control()

void eqp_reset_control (

struct eqp_control_type ∗ control,

void ∗∗ data,

int ∗ status)

Reset control parameters after import if required.

Parameters

in control is a struct whose members provide control paramters for the remaining prcedures (see
eqp_control_type)

in,out data holds private internal data

in,out status is a scalar variable of type int, that gives the exit status from the package. Possible
values are:

• 0. The import was succesful.

3.1.2.5 eqp_solve_qp()

void eqp_solve_qp (

void ∗∗ data,

int ∗ status,

int n,

int m,

int h_ne,

const real_wp_ H_val[],

const real_wp_ g[],

const real_wp_ f,

int a_ne,

const real_wp_ A_val[],

real_wp_ c[],

real_wp_ x[],

real_wp_ y[])

Solve the quadratic program when the Hessian H is available.

C interfaces to GALAHAD EQP GALAHAD 4.0

14 File Documentation

Parameters

in,out data holds private internal data

in,out status is a scalar variable of type int, that gives the entry and exit status from the package.
Possible exit are:

• 0. The run was succesful.

• -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -3. The restrictions n > 0 and m > 0 or requirement that a type contains its
relevant string 'dense', 'coordinate', 'sparse_by_rows', 'diagonal', 'scaled_identity',
'identity', 'zero' or 'none' has been violated.

• -7. The constraints appear to have no feasible point.

• -9. The analysis phase of the factorization failed; the return status from the
factorization package is given in the component inform.factor_status

• -10. The factorization failed; the return status from the factorization package is
given in the component inform.factor_status.

• -11. The solution of a set of linear equations using factors from the factorization
package failed; the return status from the factorization package is given in the
component inform.factor_status.

• -16. The problem is so ill-conditioned that further progress is impossible.

• -17. The step is too small to make further impact.

• -18. Too many iterations have been performed. This may happen if control.maxit
is too small, but may also be symptomatic of a badly scaled problem.

• -19. The CPU time limit has been reached. This may happen if
control.cpu_time_limit is too small, but may also be symptomatic of a badly scaled
problem.

• -23. An entry from the strict upper triangle of H has been specified.

in n is a scalar variable of type int, that holds the number of variables

in m is a scalar variable of type int, that holds the number of general linear constraints.

in h_ne is a scalar variable of type int, that holds the number of entries in the lower triangular
part of the Hessian matrix H .

in H_val is a one-dimensional array of size h_ne and type double, that holds the values of the
entries of the lower triangular part of the Hessian matrix H in any of the available
storage schemes.

in g is a one-dimensional array of size n and type double, that holds the linear term g of the
objective function. The j-th component of g, j = 0, ... , n-1, contains gj .

in f is a scalar of type double, that holds the constant term f of the objective function.

in a_ne is a scalar variable of type int, that holds the number of entries in the constraint Jacobian
matrix A.

in A_val is a one-dimensional array of size a_ne and type double, that holds the values of the
entries of the constraint Jacobian matrix A in any of the available storage schemes.

GALAHAD 4.0 C interfaces to GALAHAD EQP

3.1 galahad_eqp.h File Reference 15

Parameters

in c is a one-dimensional array of size m and type double, that holds the linear term c in the
constraints. The i-th component of c, i = 0, ... , m-1, contains ci.

in,out x is a one-dimensional array of size n and type double, that holds the values x of the
optimization variables. The j-th component of x, j = 0, ... , n-1, contains xj .

in,out y is a one-dimensional array of size n and type double, that holds the values y of the
Lagrange multipliers for the linear constraints. The j-th component of y, i = 0, ... , m-1,
contains yi.

Examples

eqpt.c, and eqptf.c.

3.1.2.6 eqp_solve_sldqp()

void eqp_solve_sldqp (

void ∗∗ data,

int ∗ status,

int n,

int m,

const real_wp_ w[],

const real_wp_ x0[],

const real_wp_ g[],

const real_wp_ f,

int a_ne,

const real_wp_ A_val[],

real_wp_ c[],

real_wp_ x[],

real_wp_ y[])

Solve the shifted least-distance quadratic program

Parameters

in,out data holds private internal data

C interfaces to GALAHAD EQP GALAHAD 4.0

16 File Documentation

Parameters

in,out status is a scalar variable of type int, that gives the entry and exit status from the package.
Possible exit are:

• 0. The run was succesful

• -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -3. The restrictions n > 0 and m > 0 or requirement that a type contains its
relevant string 'dense', 'coordinate', 'sparse_by_rows', 'diagonal', 'scaled_identity',
'identity', 'zero' or 'none' has been violated.

• -7. The constraints appear to have no feasible point.

• -9. The analysis phase of the factorization failed; the return status from the
factorization package is given in the component inform.factor_status

• -10. The factorization failed; the return status from the factorization package is
given in the component inform.factor_status.

• -11. The solution of a set of linear equations using factors from the factorization
package failed; the return status from the factorization package is given in the
component inform.factor_status.

• -16. The problem is so ill-conditioned that further progress is impossible.

• -17. The step is too small to make further impact.

• -18. Too many iterations have been performed. This may happen if control.maxit
is too small, but may also be symptomatic of a badly scaled problem.

• -19. The CPU time limit has been reached. This may happen if
control.cpu_time_limit is too small, but may also be symptomatic of a badly scaled
problem.

• -23. An entry from the strict upper triangle of H has been specified.

in n is a scalar variable of type int, that holds the number of variables

in m is a scalar variable of type int, that holds the number of general linear constraints.

in w is a one-dimensional array of size n and type double, that holds the values of the weights
w.

in x0 is a one-dimensional array of size n and type double, that holds the values of the shifts
x0.

in g is a one-dimensional array of size n and type double, that holds the linear term g of the
objective function. The j-th component of g, j = 0, ... , n-1, contains gj .

in f is a scalar of type double, that holds the constant term f of the objective function.

in a_ne is a scalar variable of type int, that holds the number of entries in the constraint Jacobian
matrix A.

in A_val is a one-dimensional array of size a_ne and type double, that holds the values of the
entries of the constraint Jacobian matrix A in any of the available storage schemes.

in c is a one-dimensional array of size m and type double, that holds the linear term c in the
constraints. The i-th component of c, i = 0, ... , m-1, contains ci.

GALAHAD 4.0 C interfaces to GALAHAD EQP

3.1 galahad_eqp.h File Reference 17

Parameters

in,out x is a one-dimensional array of size n and type double, that holds the values x of the
optimization variables. The j-th component of x, j = 0, ... , n-1, contains xj .

in,out y is a one-dimensional array of size n and type double, that holds the values y of the
Lagrange multipliers for the linear constraints. The j-th component of y, i = 0, ... , m-1,
contains yi.

Examples

eqpt.c, and eqptf.c.

3.1.2.7 eqp_resolve_qp()

void eqp_resolve_qp (

void ∗∗ data,

int ∗ status,

int n,

int m,

const real_wp_ g[],

const real_wp_ f,

real_wp_ c[],

real_wp_ x[],

real_wp_ y[])

Resolve the quadratic program or shifted least-distance quadratic program when some or all of the data g, f and c
has changed

Parameters

in,out data holds private internal data

C interfaces to GALAHAD EQP GALAHAD 4.0

18 File Documentation

Parameters

in,out status is a scalar variable of type int, that gives the entry and exit status from the package.
Possible exit are:

• 0. The run was succesful.

• -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -3. The restrictions n > 0 and m > 0 or requirement that a type contains its
relevant string 'dense', 'coordinate', 'sparse_by_rows', 'diagonal', 'scaled_identity',
'identity', 'zero' or 'none' has been violated.

• -7. The constraints appear to have no feasible point.

• -11. The solution of a set of linear equations using factors from the factorization
package failed; the return status from the factorization package is given in the
component inform.factor_status.

• -16. The problem is so ill-conditioned that further progress is impossible.

• -17. The step is too small to make further impact.

• -18. Too many iterations have been performed. This may happen if control.maxit
is too small, but may also be symptomatic of a badly scaled problem.

• -19. The CPU time limit has been reached. This may happen if
control.cpu_time_limit is too small, but may also be symptomatic of a badly scaled
problem.

• -23. An entry from the strict upper triangle of H has been specified.

in n is a scalar variable of type int, that holds the number of variables

in m is a scalar variable of type int, that holds the number of general linear constraints.

in g is a one-dimensional array of size n and type double, that holds the linear term g of the
objective function. The j-th component of g, j = 0, ... , n-1, contains gj .

in f is a scalar of type double, that holds the constant term f of the objective function.

in c is a one-dimensional array of size m and type double, that holds the linear term c in the
constraints. The i-th component of c, i = 0, ... , m-1, contains ci.

in,out x is a one-dimensional array of size n and type double, that holds the values x of the
optimization variables. The j-th component of x, j = 0, ... , n-1, contains xj .

in,out y is a one-dimensional array of size n and type double, that holds the values y of the
Lagrange multipliers for the linear constraints. The j-th component of y, i = 0, ... , m-1,
contains yi.

3.1.2.8 eqp_information()

void eqp_information (

void ∗∗ data,

GALAHAD 4.0 C interfaces to GALAHAD EQP

3.1 galahad_eqp.h File Reference 19

struct eqp_inform_type ∗ inform,

int ∗ status)

Provides output information

Parameters

in,out data holds private internal data

out inform is a struct containing output information (see eqp_inform_type)

out status is a scalar variable of type int, that gives the exit status from the package. Possible
values are (currently):

• 0. The values were recorded succesfully

Examples

eqpt.c, and eqptf.c.

3.1.2.9 eqp_terminate()

void eqp_terminate (

void ∗∗ data,

struct eqp_control_type ∗ control,

struct eqp_inform_type ∗ inform)

Deallocate all internal private storage

Parameters

in,out data holds private internal data

out control is a struct containing control information (see eqp_control_type)

out inform is a struct containing output information (see eqp_inform_type)

Examples

eqpt.c, and eqptf.c.

C interfaces to GALAHAD EQP GALAHAD 4.0

20 File Documentation

GALAHAD 4.0 C interfaces to GALAHAD EQP

Chapter 4

Example Documentation

4.1 eqpt.c

This is an example of how to use the package to solve a quadratic program. A variety of supported Hessian and
constraint matrix storage formats are shown.

Notice that C-style indexing is used, and that this is flaggeed by setting control.f_indexing to false.
/* eqpt.c */
/* Full test for the EQP C interface using C sparse matrix indexing */
#include <stdio.h>
#include <math.h>
#include "galahad_eqp.h"
int main(void) {

// Derived types
void *data;
struct eqp_control_type control;
struct eqp_inform_type inform;
// Set problem data
int n = 3; // dimension
int m = 2; // number of general constraints
int H_ne = 3; // Hesssian elements
int H_row[] = {0, 1, 2 }; // row indices, NB lower triangle
int H_col[] = {0, 1, 2}; // column indices, NB lower triangle
int H_ptr[] = {0, 1, 2, 3}; // row pointers
double H_val[] = {1.0, 1.0, 1.0 }; // values
double g[] = {0.0, 2.0, 0.0}; // linear term in the objective
double f = 1.0; // constant term in the objective
int A_ne = 4; // Jacobian elements
int A_row[] = {0, 0, 1, 1}; // row indices
int A_col[] = {0, 1, 1, 2}; // column indices
int A_ptr[] = {0, 2, 4}; // row pointers
double A_val[] = {2.0, 1.0, 1.0, 1.0 }; // values
// Set output storage
double c[m]; // constraint values
int x_stat[n]; // variable status
int c_stat[m]; // constraint status
char st;
int status;
printf(" C sparse matrix indexing\n\n");
printf(" basic tests of qp storage formats\n\n");
for(int d=1; d <= 7; d++){

// Initialize EQP
eqp_initialize(&data, &control, &status);
// Set user-defined control options
control.f_indexing = false; // C sparse matrix indexing
// Start from 0
double x[] = {0.0,0.0,0.0};
double y[] = {0.0,0.0};
double z[] = {0.0,0.0,0.0};
switch(d){

case 1: // sparse co-ordinate storage
st = ’C’;
eqp_import(&control, &data, &status, n, m,

"coordinate", H_ne, H_row, H_col, NULL,

22 Example Documentation

"coordinate", A_ne, A_row, A_col, NULL);
eqp_solve_qp(&data, &status, n, m, H_ne, H_val, g, f,

A_ne, A_val, c, x, y);
break;

printf(" case %1i break\n",d);
case 2: // sparse by rows

st = ’R’;
eqp_import(&control, &data, &status, n, m,

"sparse_by_rows", H_ne, NULL, H_col, H_ptr,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr);

eqp_solve_qp(&data, &status, n, m, H_ne, H_val, g, f,
A_ne, A_val, c, x, y);

break;
case 3: // dense

st = ’D’;
int H_dense_ne = 6; // number of elements of H
int A_dense_ne = 6; // number of elements of A
double H_dense[] = {1.0, 0.0, 1.0, 0.0, 0.0, 1.0};
double A_dense[] = {2.0, 1.0, 0.0, 0.0, 1.0, 1.0};
eqp_import(&control, &data, &status, n, m,

"dense", H_ne, NULL, NULL, NULL,
"dense", A_ne, NULL, NULL, NULL);

eqp_solve_qp(&data, &status, n, m, H_dense_ne, H_dense, g, f,
A_dense_ne, A_dense, c, x, y);

break;
case 4: // diagonal

st = ’L’;
eqp_import(&control, &data, &status, n, m,

"diagonal", H_ne, NULL, NULL, NULL,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr);

eqp_solve_qp(&data, &status, n, m, H_ne, H_val, g, f,
A_ne, A_val, c, x, y);

break;
case 5: // scaled identity

st = ’S’;
eqp_import(&control, &data, &status, n, m,

"scaled_identity", H_ne, NULL, NULL, NULL,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr);

eqp_solve_qp(&data, &status, n, m, H_ne, H_val, g, f,
A_ne, A_val, c, x, y);

break;
case 6: // identity

st = ’I’;
eqp_import(&control, &data, &status, n, m,

"identity", H_ne, NULL, NULL, NULL,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr);

eqp_solve_qp(&data, &status, n, m, H_ne, H_val, g, f,
A_ne, A_val, c, x, y);

break;
case 7: // zero

st = ’Z’;
eqp_import(&control, &data, &status, n, m,

"zero", H_ne, NULL, NULL, NULL,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr);

eqp_solve_qp(&data, &status, n, m, H_ne, H_val, g, f,
A_ne, A_val, c, x, y);

break;
}

eqp_information(&data, &inform, &status);
if(inform.status == 0){

printf("%c:%6i cg iterations. Optimal objective value = %5.2f status = %1i\n",
st, inform.cg_iter, inform.obj, inform.status);

}else{
printf("%c: EQP_solve exit status = %1i\n", st, inform.status);

}
//printf("x: ");
//for(int i = 0; i < n; i++) printf("%f ", x[i]);
//printf("\n");
//printf("gradient: ");
//for(int i = 0; i < n; i++) printf("%f ", g[i]);
//printf("\n");
// Delete internal workspace
eqp_terminate(&data, &control, &inform);

}
// test shifted least-distance interface
for(int d=1; d <= 1; d++){

// Initialize EQP
eqp_initialize(&data, &control, &status);
// Set user-defined control options
control.f_indexing = false; // C sparse matrix indexing
// Start from 0
double x[] = {0.0,0.0,0.0};
double y[] = {0.0,0.0};
double z[] = {0.0,0.0,0.0};
// Set shifted least-distance data
double w[] = {1.0,1.0,1.0};
double x_0[] = {0.0,0.0,0.0};

GALAHAD 4.0 C interfaces to GALAHAD EQP

4.2 eqptf.c 23

switch(d){
case 1: // sparse co-ordinate storage

st = ’W’;
eqp_import(&control, &data, &status, n, m,

"shifted_least_distance", H_ne, NULL, NULL, NULL,
"coordinate", A_ne, A_row, A_col, NULL);

eqp_solve_sldqp(&data, &status, n, m, w, x_0, g, f,
A_ne, A_val, c, x, y);

break;
}

eqp_information(&data, &inform, &status);
if(inform.status == 0){

printf("%c:%6i cg iterations. Optimal objective value = %5.2f status = %1i\n",
st, inform.cg_iter, inform.obj, inform.status);

}else{
printf("%c: EQP_solve exit status = %1i\n", st, inform.status);

}
//printf("x: ");
//for(int i = 0; i < n; i++) printf("%f ", x[i]);
//printf("\n");
//printf("gradient: ");
//for(int i = 0; i < n; i++) printf("%f ", g[i]);
//printf("\n");
// Delete internal workspace
eqp_terminate(&data, &control, &inform);

}
}

4.2 eqptf.c

This is the same example, but now fortran-style indexing is used.

/* eqptf.c */
/* Full test for the EQP C interface using Fortran sparse matrix indexing */
#include <stdio.h>
#include <math.h>
#include "galahad_eqp.h"
int main(void) {

// Derived types
void *data;
struct eqp_control_type control;
struct eqp_inform_type inform;
// Set problem data
int n = 3; // dimension
int m = 2; // number of general constraints
int H_ne = 3; // Hesssian elements
int H_row[] = {1, 2, 3 }; // row indices, NB lower triangle
int H_col[] = {1, 2, 3}; // column indices, NB lower triangle
int H_ptr[] = {1, 2, 3, 4}; // row pointers
double H_val[] = {1.0, 1.0, 1.0 }; // values
double g[] = {0.0, 2.0, 0.0}; // linear term in the objective
double f = 1.0; // constant term in the objective
int A_ne = 4; // Jacobian elements
int A_row[] = {1, 1, 2, 2}; // row indices
int A_col[] = {1, 2, 2, 3}; // column indices
int A_ptr[] = {1, 3, 5}; // row pointers
double A_val[] = {2.0, 1.0, 1.0, 1.0 }; // values
// Set output storage
double c[m]; // constraint values
int x_stat[n]; // variable status
int c_stat[m]; // constraint status
char st;
int status;
printf(" Fortran sparse matrix indexing\n\n");
printf(" basic tests of qp storage formats\n\n");
for(int d=1; d <= 7; d++){

// Initialize EQP
eqp_initialize(&data, &control, &status);
// Set user-defined control options
control.f_indexing = true; // Fortran sparse matrix indexing
// Start from 0
double x[] = {0.0,0.0,0.0};
double y[] = {0.0,0.0};
double z[] = {0.0,0.0,0.0};
switch(d){

case 1: // sparse co-ordinate storage
st = ’C’;
eqp_import(&control, &data, &status, n, m,

"coordinate", H_ne, H_row, H_col, NULL,
"coordinate", A_ne, A_row, A_col, NULL);

eqp_solve_qp(&data, &status, n, m, H_ne, H_val, g, f,

C interfaces to GALAHAD EQP GALAHAD 4.0

24 Example Documentation

A_ne, A_val, c, x, y);
break;

printf(" case %1i break\n",d);
case 2: // sparse by rows

st = ’R’;
eqp_import(&control, &data, &status, n, m,

"sparse_by_rows", H_ne, NULL, H_col, H_ptr,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr);

eqp_solve_qp(&data, &status, n, m, H_ne, H_val, g, f,
A_ne, A_val, c, x, y);

break;
case 3: // dense

st = ’D’;
int H_dense_ne = 6; // number of elements of H
int A_dense_ne = 6; // number of elements of A
double H_dense[] = {1.0, 0.0, 1.0, 0.0, 0.0, 1.0};
double A_dense[] = {2.0, 1.0, 0.0, 0.0, 1.0, 1.0};
eqp_import(&control, &data, &status, n, m,

"dense", H_ne, NULL, NULL, NULL,
"dense", A_ne, NULL, NULL, NULL);

eqp_solve_qp(&data, &status, n, m, H_dense_ne, H_dense, g, f,
A_dense_ne, A_dense, c, x, y);

break;
case 4: // diagonal

st = ’L’;
eqp_import(&control, &data, &status, n, m,

"diagonal", H_ne, NULL, NULL, NULL,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr);

eqp_solve_qp(&data, &status, n, m, H_ne, H_val, g, f,
A_ne, A_val, c, x, y);

break;
case 5: // scaled identity

st = ’S’;
eqp_import(&control, &data, &status, n, m,

"scaled_identity", H_ne, NULL, NULL, NULL,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr);

eqp_solve_qp(&data, &status, n, m, H_ne, H_val, g, f,
A_ne, A_val, c, x, y);

break;
case 6: // identity

st = ’I’;
eqp_import(&control, &data, &status, n, m,

"identity", H_ne, NULL, NULL, NULL,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr);

eqp_solve_qp(&data, &status, n, m, H_ne, H_val, g, f,
A_ne, A_val, c, x, y);

break;
case 7: // zero

st = ’Z’;
eqp_import(&control, &data, &status, n, m,

"zero", H_ne, NULL, NULL, NULL,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr);

eqp_solve_qp(&data, &status, n, m, H_ne, H_val, g, f,
A_ne, A_val, c, x, y);

break;
}

eqp_information(&data, &inform, &status);
if(inform.status == 0){

printf("%c:%6i cg iterations. Optimal objective value = %5.2f status = %1i\n",
st, inform.cg_iter, inform.obj, inform.status);

}else{
printf("%c: EQP_solve exit status = %1i\n", st, inform.status);

}
//printf("x: ");
//for(int i = 0; i < n; i++) printf("%f ", x[i]);
//printf("\n");
//printf("gradient: ");
//for(int i = 0; i < n; i++) printf("%f ", g[i]);
//printf("\n");
// Delete internal workspace
eqp_terminate(&data, &control, &inform);

}
// test shifted least-distance interface
for(int d=1; d <= 1; d++){

// Initialize EQP
eqp_initialize(&data, &control, &status);
// Set user-defined control options
control.f_indexing = true; // Fortran sparse matrix indexing
// Start from 0
double x[] = {0.0,0.0,0.0};
double y[] = {0.0,0.0};
double z[] = {0.0,0.0,0.0};
// Set shifted least-distance data
double w[] = {1.0,1.0,1.0};
double x_0[] = {0.0,0.0,0.0};
switch(d){

case 1: // sparse co-ordinate storage

GALAHAD 4.0 C interfaces to GALAHAD EQP

4.2 eqptf.c 25

st = ’W’;
eqp_import(&control, &data, &status, n, m,

"shifted_least_distance", H_ne, NULL, NULL, NULL,
"coordinate", A_ne, A_row, A_col, NULL);

eqp_solve_sldqp(&data, &status, n, m, w, x_0, g, f,
A_ne, A_val, c, x, y);

break;
}

eqp_information(&data, &inform, &status);
if(inform.status == 0){

printf("%c:%6i cg iterations. Optimal objective value = %5.2f status = %1i\n",
st, inform.cg_iter, inform.obj, inform.status);

}else{
printf("%c: EQP_solve exit status = %1i\n", st, inform.status);

}
//printf("x: ");
//for(int i = 0; i < n; i++) printf("%f ", x[i]);
//printf("\n");
//printf("gradient: ");
//for(int i = 0; i < n; i++) printf("%f ", g[i]);
//printf("\n");
// Delete internal workspace
eqp_terminate(&data, &control, &inform);

}
}

C interfaces to GALAHAD EQP GALAHAD 4.0

26 Example Documentation

GALAHAD 4.0 C interfaces to GALAHAD EQP

Index

eqp_control_type, 7
eqp_import

galahad_eqp.h, 11
eqp_inform_type, 10
eqp_information

galahad_eqp.h, 18
eqp_initialize

galahad_eqp.h, 10
eqp_read_specfile

galahad_eqp.h, 11
eqp_reset_control

galahad_eqp.h, 13
eqp_resolve_qp

galahad_eqp.h, 17
eqp_solve_qp

galahad_eqp.h, 13
eqp_solve_sldqp

galahad_eqp.h, 15
eqp_terminate

galahad_eqp.h, 19
eqp_time_type, 9

galahad_eqp.h, 7
eqp_import, 11
eqp_information, 18
eqp_initialize, 10
eqp_read_specfile, 11
eqp_reset_control, 13
eqp_resolve_qp, 17
eqp_solve_qp, 13
eqp_solve_sldqp, 15
eqp_terminate, 19

	1 GALAHAD C package eqp
	1.1 Introduction
	1.1.1 Purpose
	1.1.2 Authors
	1.1.3 Originally released
	1.1.4 Terminology
	1.1.5 Method
	1.1.6 Reference
	1.1.7 Call order
	1.1.8 Unsymmetric matrix storage formats
	1.1.8.1 Dense storage format
	1.1.8.2 Sparse co-ordinate storage format
	1.1.8.3 Sparse row-wise storage format

	1.1.9 Symmetric matrix storage formats
	1.1.9.1 Dense storage format
	1.1.9.2 Sparse co-ordinate storage format
	1.1.9.3 Sparse row-wise storage format
	1.1.9.4 Diagonal storage format
	1.1.9.5 Multiples of the identity storage format
	1.1.9.6 The identity matrix format

	2 File Index
	2.1 File List

	3 File Documentation
	3.1 galahad_eqp.h File Reference
	3.1.1 Data Structure Documentation
	3.1.1.1 struct eqp_control_type
	3.1.1.2 struct eqp_time_type
	3.1.1.3 struct eqp_inform_type

	3.1.2 Function Documentation
	3.1.2.1 eqp_initialize()
	3.1.2.2 eqp_read_specfile()
	3.1.2.3 eqp_import()
	3.1.2.4 eqp_reset_control()
	3.1.2.5 eqp_solve_qp()
	3.1.2.6 eqp_solve_sldqp()
	3.1.2.7 eqp_resolve_qp()
	3.1.2.8 eqp_information()
	3.1.2.9 eqp_terminate()

	4 Example Documentation
	4.1 eqpt.c
	4.2 eqptf.c

	Index

