
C interfaces to GALAHAD DQP

Jari Fowkes and Nick Gould

STFC Rutherford Appleton Laboratory

Sat Mar 26 2022

i

1 GALAHAD C package dqp 1

1.1 Introduction . 1

1.1.1 Purpose . 1

1.1.2 Authors . 1

1.1.3 Originally released . 1

1.1.4 Terminology . 2

1.1.5 Method . 2

1.1.6 Reference . 2

1.1.7 Call order . 3

1.1.8 Unsymmetric matrix storage formats . 3

1.1.8.1 Dense storage format . 3

1.1.8.2 Sparse co-ordinate storage format . 3

1.1.8.3 Sparse row-wise storage format . 3

1.1.9 Symmetric matrix storage formats . 4

1.1.9.1 Dense storage format . 4

1.1.9.2 Sparse co-ordinate storage format . 4

1.1.9.3 Sparse row-wise storage format . 4

1.1.9.4 Diagonal storage format . 4

1.1.9.5 Multiples of the identity storage format . 4

1.1.9.6 The identity matrix format . 4

2 File Index 5

2.1 File List . 5

3 File Documentation 7

3.1 galahad_dqp.h File Reference . 7

3.1.1 Data Structure Documentation . 8

3.1.1.1 struct dqp_control_type . 8

3.1.1.2 struct dqp_time_type . 11

3.1.1.3 struct dqp_inform_type . 11

3.1.2 Function Documentation . 12

3.1.2.1 dqp_initialize() . 12

3.1.2.2 dqp_read_specfile() . 13

3.1.2.3 dqp_import() . 13

3.1.2.4 dqp_reset_control() . 15

3.1.2.5 dqp_solve_qp() . 15

3.1.2.6 dqp_solve_sldqp() . 17

3.1.2.7 dqp_information() . 19

3.1.2.8 dqp_terminate() . 20

4 Example Documentation 21

4.1 dqpt.c . 21

4.2 dqptf.c . 23

C interfaces to GALAHAD DQP GALAHAD 4.0

ii

Index 27

GALAHAD 4.0 C interfaces to GALAHAD DQP

Chapter 1

GALAHAD C package dqp

1.1 Introduction

1.1.1 Purpose

This package uses a dual gradient-projection interior-point method to solve the strictly convex quadratic pro-
gramming problem

(0) minimize q(x) =
1

2
xTHx+ gTx+ f

or the shifted least-distance problem

minimize
1

2

n∑
j=1

w2
j (xj − x0j)2 + gTx+ f

subject to the general linear constraints

cli ≤ aTi x ≤ cui , i = 1, . . . ,m,

and the simple bound constraints
xlj ≤ xj ≤ xuj , j = 1, . . . , n,

where the n by n symmetric, positive-definite matrix H , the vectors g, w, x0, ai, cl, cu, xl, xu and the scalar f
are given. Any of the constraint bounds cli, c

u
i , xlj and xuj may be infinite. Full advantage is taken of any zero

coefficients in the matrix H or the matrix A of vectors ai.

1.1.2 Authors

N. I. M. Gould, STFC-Rutherford Appleton Laboratory, England.

C interface, additionally J. Fowkes, STFC-Rutherford Appleton Laboratory.

1.1.3 Originally released

August 2012, C interface December 2021.

2 GALAHAD C package dqp

1.1.4 Terminology

The required solution x necessarily satisfies the primal optimality conditions

(1a) Ax = c

and

(1b) cl ≤ c ≤ cu, xl ≤ x ≤ xu,

the dual optimality conditions

(2a) Hx+ g = AT y + z (or W 2(x− x0) + g = AT y + z for the shifted-least-distance type objective)

where

(2b) y = yl + yu, z = zl + zu, yl ≥ 0, yu ≤ 0, zl ≥ 0 and zu ≤ 0,

and the complementary slackness conditions

(3) (Ax− cl)T yl = 0, (Ax− cu)T yu = 0, (x− xl)T zl = 0 and (x− xu)T zu = 0,

where the diagonal matrix W 2 has diagonal entries w2
j , j = 1, . . . , n, where the vectors y and z are known as

the Lagrange multipliers for the general linear constraints, and the dual variables for the bounds, respectively, and
where the vector inequalities hold component-wise.

1.1.5 Method

Dual gradient-projection methods solve (0) by instead solving the dual quadratic program

(4)
minimize qD(yl, yu, zl, zu) = 1

2 [(y
l + yu)TA+ (zl + zu]T)H−1[AT (yl + yu) + zl + zu]

−[(yl + yu)TA+ (zl + zu]T)H−1g − (clT yl + cuT yu + xlT zl + xuT zu)
subject to (yl, zl) ≥ 0 and (yu, zu) ≤ 0,

and then recovering the required solution from the linear system

Hx = −g +AT (yl + yu) + zl + zu.

The dual problem (4) is solved by an accelerated gradient-projection method comprising of alternating phases
in which (i) the current projected dual gradient is traced downhill (the 'arc search') as far as possible and (ii)
the dual variables that are currently on their bounds are temporarily fixed and the unconstrained minimizer of
qD(yl, yu, zl, zu) with respect to the remaining variables is sought; the minimizer in the second phase may it-
self need to be projected back into the dual feasible region (either using a brute-force backtrack or a second arc
search).

Both phases require the solution of sparse systems of symmetric linear equations, and these are handled by the
GALAHAD matrix factorization package SBLS or the GALAHAD conjugate-gradient package GLTR. The systems
are commonly singular, and this leads to a requirement to find the Fredholm Alternative for the given matrix and
its right-hand side. In the non-singular case, there is an option to update existing factorizations using the "Schur-
complement" approach given by the GALAHAD package SCU.

Optionally, the problem may be pre-processed temporarily to eliminate dependentconstraints using the GALAHAD
package FDC. This may improve the performance of the subsequent iteration.

1.1.6 Reference

The basic algorithm is described in

N. I. M. Gould and D. P. Robinson, `‘A dual gradient-projection method for large-scale strictly-convex quadratic
problems’', Computational Optimization and Applications 67(1) (2017) 1-38.

GALAHAD 4.0 C interfaces to GALAHAD DQP

1.1 Introduction 3

1.1.7 Call order

To solve a given problem, functions from the dqp package must be called in the following order:

• dqp_initialize - provide default control parameters and set up initial data structures

• dqp_read_specfile (optional) - override control values by reading replacement values from a file

• dqp_import - set up problem data structures and fixed values

• dqp_reset_control (optional) - possibly change control parameters if a sequence of problems are being solved

• solve the problem by calling one of

– dqp_solve_qp - solve the quadratic program

– dqp_solve_sldqp - solve the shifted least-distance problem

• dqp_information (optional) - recover information about the solution and solution process

• dqp_terminate - deallocate data structures

See Section 4.1 for examples of use.

1.1.8 Unsymmetric matrix storage formats

The unsymmetric m by n constraint matrix A may be presented and stored in a variety of convenient input formats.

Both C-style (0 based) and fortran-style (1-based) indexing is allowed. Choose control.f_indexing as
false for C style and true for fortran style; the discussion below presumes C style, but add 1 to indices for the
corresponding fortran version.

Wrappers will automatically convert between 0-based (C) and 1-based (fortran) array indexing, so may be used
transparently from C. This conversion involves both time and memory overheads that may be avoided by supplying
data that is already stored using 1-based indexing.

1.1.8.1 Dense storage format

The matrix A is stored as a compact dense matrix by rows, that is, the values of the entries of each row in turn are
stored in order within an appropriate real one-dimensional array. In this case, component n ∗ i + j of the storage
array A_val will hold the value Aij for 0 ≤ i ≤ m− 1, 0 ≤ j ≤ n− 1.

1.1.8.2 Sparse co-ordinate storage format

Only the nonzero entries of the matrices are stored. For the l-th entry, 0 ≤ l ≤ ne− 1, of A, its row index i, column
index j and value Aij , 0 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 1, are stored as the l-th components of the integer arrays
A_row and A_col and real array A_val, respectively, while the number of nonzeros is recorded as A_ne = ne.

1.1.8.3 Sparse row-wise storage format

Again only the nonzero entries are stored, but this time they are ordered so that those in row i appear directly before
those in row i+1. For the i-th row of A the i-th component of the integer array A_ptr holds the position of the first
entry in this row, while A_ptr(m) holds the total number of entries plus one. The column indices j, 0 ≤ j ≤ n − 1,
and values Aij of the nonzero entries in the i-th row are stored in components l = A_ptr(i), . . ., A_ptr(i+1)-1,
0 ≤ i ≤ m − 1, of the integer array A_col, and real array A_val, respectively. For sparse matrices, this scheme
almost always requires less storage than its predecessor.

C interfaces to GALAHAD DQP GALAHAD 4.0

4 GALAHAD C package dqp

1.1.9 Symmetric matrix storage formats

Likewise, the symmetric n by n objective Hessian matrix H may be presented and stored in a variety of formats.
But crucially symmetry is exploited by only storing values from the lower triangular part (i.e, those entries that lie on
or below the leading diagonal).

1.1.9.1 Dense storage format

The matrix H is stored as a compact dense matrix by rows, that is, the values of the entries of each row in turn are
stored in order within an appropriate real one-dimensional array. Since H is symmetric, only the lower triangular
part (that is the part hij for 0 ≤ j ≤ i ≤ n − 1) need be held. In this case the lower triangle should be stored by
rows, that is component i ∗ i/2 + j of the storage array H_val will hold the value hij (and, by symmetry, hji) for
0 ≤ j ≤ i ≤ n− 1.

1.1.9.2 Sparse co-ordinate storage format

Only the nonzero entries of the matrices are stored. For the l-th entry, 0 ≤ l ≤ ne− 1, of H , its row index i, column
index j and value hij , 0 ≤ j ≤ i ≤ n − 1, are stored as the l-th components of the integer arrays H_row and
H_col and real array H_val, respectively, while the number of nonzeros is recorded as H_ne = ne. Note that only
the entries in the lower triangle should be stored.

1.1.9.3 Sparse row-wise storage format

Again only the nonzero entries are stored, but this time they are ordered so that those in row i appear directly before
those in row i+1. For the i-th row of H the i-th component of the integer array H_ptr holds the position of the first
entry in this row, while H_ptr(n) holds the total number of entries plus one. The column indices j, 0 ≤ j ≤ i, and
values hij of the entries in the i-th row are stored in components l = H_ptr(i), . . ., H_ptr(i+1)-1 of the integer array
H_col, and real array H_val, respectively. Note that as before only the entries in the lower triangle should be stored.
For sparse matrices, this scheme almost always requires less storage than its predecessor.

1.1.9.4 Diagonal storage format

If H is diagonal (i.e., Hij = 0 for all 0 ≤ i 6= j ≤ n − 1) only the diagonals entries Hii, 0 ≤ i ≤ n − 1 need be
stored, and the first n components of the array H_val may be used for the purpose.

1.1.9.5 Multiples of the identity storage format

If H is a multiple of the identity matrix, (i.e., H = αI where I is the n by n identity matrix and α is a scalar), it
suffices to store α as the first component of H_val.

1.1.9.6 The identity matrix format

If H is the identity matrix, no values need be stored.

GALAHAD 4.0 C interfaces to GALAHAD DQP

Chapter 2

File Index

2.1 File List

Here is a list of all files with brief descriptions:

galahad_dqp.h . 7

6 File Index

GALAHAD 4.0 C interfaces to GALAHAD DQP

Chapter 3

File Documentation

3.1 galahad_dqp.h File Reference

#include <stdbool.h>
#include "galahad_precision.h"
#include "galahad_fdc.h"
#include "galahad_sls.h"
#include "galahad_sbls.h"
#include "galahad_gltr.h"
#include "galahad_scu.h"
#include "galahad_rpd.h"

Data Structures

• struct dqp_control_type
• struct dqp_time_type
• struct dqp_inform_type

Functions

• void dqp_initialize (void ∗∗data, struct dqp_control_type ∗control, int ∗status)
• void dqp_read_specfile (struct dqp_control_type ∗control, const char specfile[])
• void dqp_import (struct dqp_control_type ∗control, void ∗∗data, int ∗status, int n, int m, const char H_type[],

int H_ne, const int H_row[], const int H_col[], const int H_ptr[], const char A_type[], int A_ne, const int
A_row[], const int A_col[], const int A_ptr[])

• void dqp_reset_control (struct dqp_control_type ∗control, void ∗∗data, int ∗status)
• void dqp_solve_qp (void ∗∗data, int ∗status, int n, int m, int h_ne, const real_wp_ H_val[], const real_wp_

g[], const real_wp_ f, int a_ne, const real_wp_ A_val[], const real_wp_ c_l[], const real_wp_ c_u[], const
real_wp_ x_l[], const real_wp_ x_u[], real_wp_ x[], real_wp_ c[], real_wp_ y[], real_wp_ z[], int x_stat[], int
c_stat[])

• void dqp_solve_sldqp (void ∗∗data, int ∗status, int n, int m, const real_wp_ w[], const real_wp_ x0[], const
real_wp_ g[], const real_wp_ f, int a_ne, const real_wp_ A_val[], const real_wp_ c_l[], const real_wp_ c_←↩

u[], const real_wp_ x_l[], const real_wp_ x_u[], real_wp_ x[], real_wp_ c[], real_wp_ y[], real_wp_ z[], int
x_stat[], int c_stat[])

• void dqp_information (void ∗∗data, struct dqp_inform_type ∗inform, int ∗status)
• void dqp_terminate (void ∗∗data, struct dqp_control_type ∗control, struct dqp_inform_type ∗inform)

8 File Documentation

3.1.1 Data Structure Documentation

3.1.1.1 struct dqp_control_type

control derived type as a C struct

Examples

dqpt.c, and dqptf.c.

Data Fields

bool f_indexing use C or Fortran sparse matrix indexing

int error error and warning diagnostics occur on stream
error

int out general output occurs on stream out

int print_level the level of output required is specified by
print_level

int start_print any printing will start on this iteration

int stop_print any printing will stop on this iteration

int print_gap printing will only occur every print_gap iterations

int dual_starting_point which starting point should be used for the dual
problem

• -1 user supplied comparing primal vs dual
variables

• 0 user supplied

• 1 minimize linearized dual

• 2 minimize simplified quadratic dual

• 3 all free (= all active primal costraints)

• 4 all fixed on bounds (= no active primal
costraints)

int maxit at most maxit inner iterations are allowed
int max_sc the maximum permitted size of the Schur

complement before a refactorization is performed
(used in the case where there is no Fredholm
Alternative, 0 = refactor every iteration)

int cauchy_only a subspace step will only be taken when the
current Cauchy step has changed no more than
than cauchy_only active constraints; the
subspace step will always be taken if
cauchy_only < 0

int arc_search_maxit how many iterations are allowed per arc search
(-ve = as many as require

int cg_maxit how many CG iterations to perform per DQP
iteration (-ve reverts to n+1)

GALAHAD 4.0 C interfaces to GALAHAD DQP

3.1 galahad_dqp.h File Reference 9

Data Fields

int explore_optimal_subspace once a potentially optimal subspace has been
found, investigate it

• 0 as per an ordinary subspace

• 1 by increasing the maximum number of
allowed CG iterations

• 2 by switching to a direct method

int restore_problem indicate whether and how much of the input
problem should be restored on output. Possible
values are

• 0 nothing restored

• 1 scalar and vector parameters

• 2 all parameters

int sif_file_device specifies the unit number to write generated SIF
file describing the current problem

int qplib_file_device specifies the unit number to write generated
QPLIB file describing the current problem

real_wp_ rho the penalty weight, rho. The general constraints
are not enforced explicitly, but instead included in
the objective as a penalty term weighted by rho
when rho > 0. If rho <= 0, the general
constraints are explicit (that is, there is no penalty
term in the objective function)

real_wp_ infinity any bound larger than infinity in modulus will be
regarded as infinite

real_wp_ stop_abs_p the required absolute and relative accuracies for
the primal infeasibilies

real_wp_ stop_rel_p see stop_abs_p

real_wp_ stop_abs_d the required absolute and relative accuracies for
the dual infeasibility

real_wp_ stop_rel_d see stop_abs_d

real_wp_ stop_abs_c the required absolute and relative accuracies for
the complementarity

real_wp_ stop_rel_c see stop_abs_c

real_wp_ stop_cg_relative the CG iteration will be stopped as soon as the
current norm of the preconditioned gradient is
smaller than max(stop_cg_relative ∗ initial
preconditioned gradient, stop_cg_absolute)

real_wp_ stop_cg_absolute see stop_cg_relative

real_wp_ cg_zero_curvature threshold below which curvature is regarded as
zero if CG is used

real_wp_ max_growth maximum growth factor allowed without a
refactorization

real_wp_ identical_bounds_tol any pair of constraint bounds (c_l,c_u) or
(x_l,x_u) that are closer than
identical_bounds_tol will be reset to the average
of their values

real_wp_ cpu_time_limit the maximum CPU time allowed (-ve means
infinite)

C interfaces to GALAHAD DQP GALAHAD 4.0

10 File Documentation

Data Fields

real_wp_ clock_time_limit the maximum elapsed clock time allowed (-ve
means infinite)

real_wp_ initial_perturbation the initial penalty weight (for DLP only)

real_wp_ perturbation_reduction the penalty weight reduction factor (for DLP only)

real_wp_ final_perturbation the final penalty weight (for DLP only)

bool factor_optimal_matrix are the factors of the optimal augmented matrix
required? (for DLP only)

bool remove_dependencies the equality constraints will be preprocessed to
remove any linear dependencies if true

bool treat_zero_bounds_as_general any problem bound with the value zero will be
treated as if it were a general value if true

bool exact_arc_search if .exact_arc_search is true, an exact piecewise
arc search will be performed. Otherwise an
ineaxt search using a backtracing Armijo strategy
will be employed

bool subspace_direct if .subspace_direct is true, the subspace step will
be calculated using a direct (factorization)
method, while if it is false, an iterative
(conjugate-gradient) method will be used.

bool subspace_alternate if .subspace_alternate is true, the subspace step
will alternate between a direct (factorization)
method and an iterative (GLTR
conjugate-gradient) method. This will override
.subspace_direct

bool subspace_arc_search if .subspace_arc_search is true, a piecewise arc
search will be performed along the subspace
step. Otherwise the search will stop at the
firstconstraint encountered

bool space_critical if .space_critical true, every effort will be made to
use as little space as possible. This may result in
longer computation time

bool deallocate_error_fatal if .deallocate_error_fatal is true, any array/pointer
deallocation error will terminate execution.
Otherwise, computation will continue

bool generate_sif_file if .generate_sif_file is .true. if a SIF file describing
the current problem is to be generated

bool generate_qplib_file if .generate_qplib_file is .true. if a QPLIB file
describing the current problem is to be generated

char symmetric_linear_solver[31] indefinite linear equation solver set in
symmetric_linear_solver

char definite_linear_solver[31] definite linear equation solver

char unsymmetric_linear_solver[31] unsymmetric linear equation solver

char sif_file_name[31] name of generated SIF file containing input
problem

char qplib_file_name[31] name of generated QPLIB file containing input
problem

char prefix[31] all output lines will be prefixed by
.prefix(2:LEN(TRIM(.prefix))-1) where .prefix
contains the required string enclosed in quotes,
e.g. "string" or 'string'

struct fdc_control_type fdc_control control parameters for FDC

struct sls_control_type sls_control control parameters for SLS

GALAHAD 4.0 C interfaces to GALAHAD DQP

3.1 galahad_dqp.h File Reference 11

Data Fields

struct sbls_control_type sbls_control control parameters for SBLS

struct gltr_control_type gltr_control control parameters for GLTR

3.1.1.2 struct dqp_time_type

time derived type as a C struct

Data Fields

real_wp_ total the total CPU time spent in the package

real_wp_ preprocess the CPU time spent preprocessing the problem

real_wp_ find_dependent the CPU time spent detecting linear dependencies

real_wp_ analyse the CPU time spent analysing the required matrices prior to factorization

real_wp_ factorize the CPU time spent factorizing the required matrices

real_wp_ solve the CPU time spent computing the search direction

real_wp_ search the CPU time spent in the linesearch

real_wp_ clock_total the total clock time spent in the package

real_wp_ clock_preprocess the clock time spent preprocessing the problem

real_wp_ clock_find_dependent the clock time spent detecting linear dependencies

real_wp_ clock_analyse the clock time spent analysing the required matrices prior to factorization

real_wp_ clock_factorize the clock time spent factorizing the required matrices

real_wp_ clock_solve the clock time spent computing the search direction

real_wp_ clock_search the clock time spent in the linesearch

3.1.1.3 struct dqp_inform_type

inform derived type as a C struct

Examples

dqpt.c, and dqptf.c.

Data Fields

int status return status. See DQP_solve for details
int alloc_status the status of the last attempted allocation/deallocation

char bad_alloc[81] the name of the array for which an
allocation/deallocation error ocurred

int iter the total number of iterations required

int cg_iter the total number of iterations required

int factorization_status the return status from the factorization
int factorization_integer the total integer workspace required for the

factorization
int factorization_real the total real workspace required for the factorization

int nfacts the total number of factorizations performed

C interfaces to GALAHAD DQP GALAHAD 4.0

12 File Documentation

Data Fields

int threads the number of threads used
real_wp_ obj the value of the objective function at the best estimate

of the solution determined by DQP_solve

real_wp_ primal_infeasibility the value of the primal infeasibility

real_wp_ dual_infeasibility the value of the dual infeasibility

real_wp_ complementary_slackness the value of the complementary slackness

real_wp_ non_negligible_pivot the smallest pivot that was not judged to be zero when
detecting linearly dependent constraints

bool feasible is the returned "solution" feasible?
int checkpointsIter[16] checkpoints(i) records the iteration at which the

criticality measures first fall below 10−i, i = 1, ..., 16
(-1 means not achieved)

real_wp_ checkpointsTime[16] see checkpointsIter

struct dqp_time_type time timings (see above)

struct fdc_inform_type fdc_inform inform parameters for FDC

struct sls_inform_type sls_inform inform parameters for SLS

struct sbls_inform_type sbls_inform inform parameters for SBLS

struct gltr_inform_type gltr_inform return information from GLTR

struct scu_inform_type scu_inform inform parameters for SCU int scu_status; see
scu_status

struct rpd_inform_type rpd_inform inform parameters for RPD

3.1.2 Function Documentation

3.1.2.1 dqp_initialize()

void dqp_initialize (

void ∗∗ data,

struct dqp_control_type ∗ control,

int ∗ status)

Set default control values and initialize private data

Parameters

in,out data holds private internal data

out control is a struct containing control information (see dqp_control_type)

out status is a scalar variable of type int, that gives the exit status from the package. Possible
values are (currently):

• 0. The import was succesful.

GALAHAD 4.0 C interfaces to GALAHAD DQP

3.1 galahad_dqp.h File Reference 13

Examples

dqpt.c, and dqptf.c.

3.1.2.2 dqp_read_specfile()

void dqp_read_specfile (

struct dqp_control_type ∗ control,

const char specfile[])

Read the content of a specification file, and assign values associated with given keywords to the corresponding
control parameters. By default, the spcification file will be named RUNDQP.SPC and lie in the current directory.
Refer to Table 2.1 in the fortran documentation provided in $GALAHAD/doc/dqp.pdf for a list of keywords that may
be set.

Parameters

in,out control is a struct containing control information (see dqp_control_type)

in specfile is a character string containing the name of the specification file

3.1.2.3 dqp_import()

void dqp_import (

struct dqp_control_type ∗ control,

void ∗∗ data,

int ∗ status,

int n,

int m,

const char H_type[],

int H_ne,

const int H_row[],

const int H_col[],

const int H_ptr[],

const char A_type[],

int A_ne,

const int A_row[],

const int A_col[],

const int A_ptr[])

Import problem data into internal storage prior to solution.

Parameters

in control is a struct whose members provide control paramters for the remaining prcedures (see
dqp_control_type)

in,out data holds private internal data

C interfaces to GALAHAD DQP GALAHAD 4.0

14 File Documentation

Parameters

in,out status is a scalar variable of type int, that gives the exit status from the package. Possible
values are:

• 0. The import was succesful

• -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -3. The restrictions n > 0 or m > 0 or requirement that a type contains its
relevant string 'dense', 'coordinate', 'sparse_by_rows', 'diagonal', 'scaled_identity'
or 'identity' has been violated.

• -23. An entry from the strict upper triangle of H has been specified.

in n is a scalar variable of type int, that holds the number of variables.

in m is a scalar variable of type int, that holds the number of general linear constraints.

in H_type is a one-dimensional array of type char that specifies the symmetric storage scheme
used for the Hessian, H . It should be one of 'coordinate', 'sparse_by_rows', 'dense',
'diagonal', 'scaled_identity', or 'identity'; lower or upper case variants are allowed.

in H_ne is a scalar variable of type int, that holds the number of entries in the lower triangular
part of H in the sparse co-ordinate storage scheme. It need not be set for any of the
other schemes.

in H_row is a one-dimensional array of size H_ne and type int, that holds the row indices of the
lower triangular part of H in the sparse co-ordinate storage scheme. It need not be set
for any of the other three schemes, and in this case can be NULL.

in H_col is a one-dimensional array of size H_ne and type int, that holds the column indices of
the lower triangular part of H in either the sparse co-ordinate, or the sparse row-wise
storage scheme. It need not be set when the dense, diagonal or (scaled) identity
storage schemes are used, and in this case can be NULL.

in H_ptr is a one-dimensional array of size n+1 and type int, that holds the starting position of
each row of the lower triangular part of H , as well as the total number of entries plus
one, in the sparse row-wise storage scheme. It need not be set when the other
schemes are used, and in this case can be NULL.

in A_type is a one-dimensional array of type char that specifies the unsymmetric storage scheme
used for the constraint Jacobian, A. It should be one of 'coordinate', 'sparse_by_rows'
or 'dense; lower or upper case variants are allowed.

in A_ne is a scalar variable of type int, that holds the number of entries in A in the sparse
co-ordinate storage scheme. It need not be set for any of the other schemes.

in A_row is a one-dimensional array of size A_ne and type int, that holds the row indices of A in
the sparse co-ordinate storage scheme. It need not be set for any of the other
schemes, and in this case can be NULL.

in A_col is a one-dimensional array of size A_ne and type int, that holds the column indices of A
in either the sparse co-ordinate, or the sparse row-wise storage scheme. It need not be
set when the dense or diagonal storage schemes are used, and in this case can be
NULL.

in A_ptr is a one-dimensional array of size n+1 and type int, that holds the starting position of
each row of A, as well as the total number of entries plus one, in the sparse row-wise
storage scheme. It need not be set when the other schemes are used, and in this case
can be NULL.

GALAHAD 4.0 C interfaces to GALAHAD DQP

3.1 galahad_dqp.h File Reference 15

Examples

dqpt.c, and dqptf.c.

3.1.2.4 dqp_reset_control()

void dqp_reset_control (

struct dqp_control_type ∗ control,

void ∗∗ data,

int ∗ status)

Reset control parameters after import if required.

Parameters

in control is a struct whose members provide control paramters for the remaining prcedures (see
dqp_control_type)

in,out data holds private internal data

in,out status is a scalar variable of type int, that gives the exit status from the package. Possible
values are:

• 0. The import was succesful.

3.1.2.5 dqp_solve_qp()

void dqp_solve_qp (

void ∗∗ data,

int ∗ status,

int n,

int m,

int h_ne,

const real_wp_ H_val[],

const real_wp_ g[],

const real_wp_ f,

int a_ne,

const real_wp_ A_val[],

const real_wp_ c_l[],

const real_wp_ c_u[],

const real_wp_ x_l[],

const real_wp_ x_u[],

real_wp_ x[],

real_wp_ c[],

real_wp_ y[],

real_wp_ z[],

int x_stat[],

int c_stat[])

Solve the quadratic program when the Hessian H is available.

C interfaces to GALAHAD DQP GALAHAD 4.0

16 File Documentation

Parameters

in,out data holds private internal data

in,out status is a scalar variable of type int, that gives the entry and exit status from the package.
Possible exit are:

• 0. The run was succesful.

• -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -3. The restrictions n > 0 and m > 0 or requirement that a type contains its
relevant string 'dense', 'coordinate', 'sparse_by_rows', 'diagonal', 'scaled_identity',
'identity', 'zero' or 'none' has been violated.

• -5. The simple-bound constraints are inconsistent.

• -7. The constraints appear to have no feasible point.

• -9. The analysis phase of the factorization failed; the return status from the
factorization package is given in the component inform.factor_status

• -10. The factorization failed; the return status from the factorization package is
given in the component inform.factor_status.

• -11. The solution of a set of linear equations using factors from the factorization
package failed; the return status from the factorization package is given in the
component inform.factor_status.

• -16. The problem is so ill-conditioned that further progress is impossible.

• -17. The step is too small to make further impact.

• -18. Too many iterations have been performed. This may happen if control.maxit
is too small, but may also be symptomatic of a badly scaled problem.

• -19. The CPU time limit has been reached. This may happen if
control.cpu_time_limit is too small, but may also be symptomatic of a badly scaled
problem.

• -23. An entry from the strict upper triangle of H has been specified.

in n is a scalar variable of type int, that holds the number of variables

in m is a scalar variable of type int, that holds the number of general linear constraints.

in h_ne is a scalar variable of type int, that holds the number of entries in the lower triangular
part of the Hessian matrix H .

in H_val is a one-dimensional array of size h_ne and type double, that holds the values of the
entries of the lower triangular part of the Hessian matrix H in any of the available
storage schemes.

in g is a one-dimensional array of size n and type double, that holds the linear term g of the
objective function. The j-th component of g, j = 0, ... , n-1, contains gj .

in f is a scalar of type double, that holds the constant term f of the objective function.

in a_ne is a scalar variable of type int, that holds the number of entries in the constraint Jacobian
matrix A.

GALAHAD 4.0 C interfaces to GALAHAD DQP

3.1 galahad_dqp.h File Reference 17

Parameters

in A_val is a one-dimensional array of size a_ne and type double, that holds the values of the
entries of the constraint Jacobian matrix A in any of the available storage schemes.

in c_l is a one-dimensional array of size m and type double, that holds the lower bounds cl on
the constraints Ax. The i-th component of c_l, i = 0, ... , m-1, contains cli.

in c_u is a one-dimensional array of size m and type double, that holds the upper bounds cl on
the constraints Ax. The i-th component of c_u, i = 0, ... , m-1, contains cui .

in x_l is a one-dimensional array of size n and type double, that holds the lower bounds xl on
the variables x. The j-th component of x_l, j = 0, ... , n-1, contains xlj .

in x_u is a one-dimensional array of size n and type double, that holds the upper bounds xl on
the variables x. The j-th component of x_u, j = 0, ... , n-1, contains xlj .

in,out x is a one-dimensional array of size n and type double, that holds the values x of the
optimization variables. The j-th component of x, j = 0, ... , n-1, contains xj .

out c is a one-dimensional array of size m and type double, that holds the residual c(x). The
i-th component of c, j = 0, ... , n-1, contains cj(x).

in,out y is a one-dimensional array of size n and type double, that holds the values y of the
Lagrange multipliers for the general linear constraints. The j-th component of y, j = 0, ... ,
n-1, contains yj .

in,out z is a one-dimensional array of size n and type double, that holds the values z of the dual
variables. The j-th component of z, j = 0, ... , n-1, contains zj .

out x_stat is a one-dimensional array of size n and type int, that gives the optimal status of the
problem variables. If x_stat(j) is negative, the variable xj most likely lies on its lower
bound, if it is positive, it lies on its upper bound, and if it is zero, it lies between its
bounds.

out c_stat is a one-dimensional array of size m and type int, that gives the optimal status of the
general linear constraints. If c_stat(i) is negative, the constraint value aTi x most likely
lies on its lower bound, if it is positive, it lies on its upper bound, and if it is zero, it lies
between its bounds.

Examples

dqpt.c, and dqptf.c.

3.1.2.6 dqp_solve_sldqp()

void dqp_solve_sldqp (

void ∗∗ data,

int ∗ status,

int n,

int m,

const real_wp_ w[],

const real_wp_ x0[],

const real_wp_ g[],

const real_wp_ f,

int a_ne,

const real_wp_ A_val[],

const real_wp_ c_l[],

const real_wp_ c_u[],

C interfaces to GALAHAD DQP GALAHAD 4.0

18 File Documentation

const real_wp_ x_l[],

const real_wp_ x_u[],

real_wp_ x[],

real_wp_ c[],

real_wp_ y[],

real_wp_ z[],

int x_stat[],

int c_stat[])

Solve the shifted least-distance quadratic program

Parameters

in,out data holds private internal data

in,out status is a scalar variable of type int, that gives the entry and exit status from the package.
Possible exit are:

• 0. The run was succesful

• -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -3. The restrictions n > 0 and m > 0 or requirement that a type contains its
relevant string 'dense', 'coordinate', 'sparse_by_rows', 'diagonal', 'scaled_identity',
'identity', 'zero' or 'none' has been violated.

• -5. The simple-bound constraints are inconsistent.

• -7. The constraints appear to have no feasible point.

• -9. The analysis phase of the factorization failed; the return status from the
factorization package is given in the component inform.factor_status

• -10. The factorization failed; the return status from the factorization package is
given in the component inform.factor_status.

• -11. The solution of a set of linear equations using factors from the factorization
package failed; the return status from the factorization package is given in the
component inform.factor_status.

• -16. The problem is so ill-conditioned that further progress is impossible.

• -17. The step is too small to make further impact.

• -18. Too many iterations have been performed. This may happen if control.maxit
is too small, but may also be symptomatic of a badly scaled problem.

• -19. The CPU time limit has been reached. This may happen if
control.cpu_time_limit is too small, but may also be symptomatic of a badly scaled
problem.

• -23. An entry from the strict upper triangle of H has been specified.

in n is a scalar variable of type int, that holds the number of variables

in m is a scalar variable of type int, that holds the number of general linear constraints.

in w is a one-dimensional array of size n and type double, that holds the values of the weights
w.

GALAHAD 4.0 C interfaces to GALAHAD DQP

3.1 galahad_dqp.h File Reference 19

Parameters

in x0 is a one-dimensional array of size n and type double, that holds the values of the shifts
x0.

in g is a one-dimensional array of size n and type double, that holds the linear term g of the
objective function. The j-th component of g, j = 0, ... , n-1, contains gj .

in f is a scalar of type double, that holds the constant term f of the objective function.

in a_ne is a scalar variable of type int, that holds the number of entries in the constraint Jacobian
matrix A.

in A_val is a one-dimensional array of size a_ne and type double, that holds the values of the
entries of the constraint Jacobian matrix A in any of the available storage schemes.

in c_l is a one-dimensional array of size m and type double, that holds the lower bounds cl on
the constraints Ax. The i-th component of c_l, i = 0, ... , m-1, contains cli.

in c_u is a one-dimensional array of size m and type double, that holds the upper bounds cl on
the constraints Ax. The i-th component of c_u, i = 0, ... , m-1, contains cui .

in x_l is a one-dimensional array of size n and type double, that holds the lower bounds xl on
the variables x. The j-th component of x_l, j = 0, ... , n-1, contains xlj .

in x_u is a one-dimensional array of size n and type double, that holds the upper bounds xl on
the variables x. The j-th component of x_u, j = 0, ... , n-1, contains xlj .

in,out x is a one-dimensional array of size n and type double, that holds the values x of the
optimization variables. The j-th component of x, j = 0, ... , n-1, contains xj .

out c is a one-dimensional array of size m and type double, that holds the residual c(x). The
i-th component of c, j = 0, ... , n-1, contains cj(x).

in,out y is a one-dimensional array of size n and type double, that holds the values y of the
Lagrange multipliers for the general linear constraints. The j-th component of y, j = 0, ... ,
n-1, contains yj .

in,out z is a one-dimensional array of size n and type double, that holds the values z of the dual
variables. The j-th component of z, j = 0, ... , n-1, contains zj .

out x_stat is a one-dimensional array of size n and type int, that gives the optimal status of the
problem variables. If x_stat(j) is negative, the variable xj most likely lies on its lower
bound, if it is positive, it lies on its upper bound, and if it is zero, it lies between its
bounds.

out c_stat is a one-dimensional array of size m and type int, that gives the optimal status of the
general linear constraints. If c_stat(i) is negative, the constraint value aTi x most likely
lies on its lower bound, if it is positive, it lies on its upper bound, and if it is zero, it lies
between its bounds.

Examples

dqpt.c, and dqptf.c.

3.1.2.7 dqp_information()

void dqp_information (

void ∗∗ data,

struct dqp_inform_type ∗ inform,

int ∗ status)

Provides output information

C interfaces to GALAHAD DQP GALAHAD 4.0

20 File Documentation

Parameters

in,out data holds private internal data

out inform is a struct containing output information (see dqp_inform_type)

out status is a scalar variable of type int, that gives the exit status from the package. Possible
values are (currently):

• 0. The values were recorded succesfully

Examples

dqpt.c, and dqptf.c.

3.1.2.8 dqp_terminate()

void dqp_terminate (

void ∗∗ data,

struct dqp_control_type ∗ control,

struct dqp_inform_type ∗ inform)

Deallocate all internal private storage

Parameters

in,out data holds private internal data

out control is a struct containing control information (see dqp_control_type)

out inform is a struct containing output information (see dqp_inform_type)

Examples

dqpt.c, and dqptf.c.

GALAHAD 4.0 C interfaces to GALAHAD DQP

Chapter 4

Example Documentation

4.1 dqpt.c

This is an example of how to use the package to solve a quadratic program. A variety of supported Hessian and
constraint matrix storage formats are shown.

Notice that C-style indexing is used, and that this is flaggeed by setting control.f_indexing to false.
/* dqpt.c */
/* Full test for the DQP C interface using C sparse matrix indexing */
#include <stdio.h>
#include <math.h>
#include "galahad_dqp.h"
int main(void) {

// Derived types
void *data;
struct dqp_control_type control;
struct dqp_inform_type inform;
// Set problem data
int n = 3; // dimension
int m = 2; // number of general constraints
int H_ne = 3; // Hesssian elements
int H_row[] = {0, 1, 2 }; // row indices, NB lower triangle
int H_col[] = {0, 1, 2}; // column indices, NB lower triangle
int H_ptr[] = {0, 1, 2, 3}; // row pointers
double H_val[] = {1.0, 1.0, 1.0 }; // values
double g[] = {0.0, 2.0, 0.0}; // linear term in the objective
double f = 1.0; // constant term in the objective
int A_ne = 4; // Jacobian elements
int A_row[] = {0, 0, 1, 1}; // row indices
int A_col[] = {0, 1, 1, 2}; // column indices
int A_ptr[] = {0, 2, 4}; // row pointers
double A_val[] = {2.0, 1.0, 1.0, 1.0 }; // values
double c_l[] = {1.0, 2.0}; // constraint lower bound
double c_u[] = {2.0, 2.0}; // constraint upper bound
double x_l[] = {-1.0, - INFINITY, - INFINITY}; // variable lower bound
double x_u[] = {1.0, INFINITY, 2.0}; // variable upper bound
// Set output storage
double c[m]; // constraint values
int x_stat[n]; // variable status
int c_stat[m]; // constraint status
char st;
int status;
printf(" C sparse matrix indexing\n\n");
printf(" basic tests of qp storage formats\n\n");
for(int d=1; d <= 6; d++){

// Initialize DQP
dqp_initialize(&data, &control, &status);
// Set user-defined control options
control.f_indexing = false; // C sparse matrix indexing
// Start from 0
double x[] = {0.0,0.0,0.0};
double y[] = {0.0,0.0};
double z[] = {0.0,0.0,0.0};
switch(d){

22 Example Documentation

case 1: // sparse co-ordinate storage
st = ’C’;
dqp_import(&control, &data, &status, n, m,

"coordinate", H_ne, H_row, H_col, NULL,
"coordinate", A_ne, A_row, A_col, NULL);

dqp_solve_qp(&data, &status, n, m, H_ne, H_val, g, f,
A_ne, A_val, c_l, c_u, x_l, x_u, x, c, y, z,
x_stat, c_stat);

break;
printf(" case %1i break\n",d);
case 2: // sparse by rows

st = ’R’;
dqp_import(&control, &data, &status, n, m,

"sparse_by_rows", H_ne, NULL, H_col, H_ptr,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr);

dqp_solve_qp(&data, &status, n, m, H_ne, H_val, g, f,
A_ne, A_val, c_l, c_u, x_l, x_u, x, c, y, z,
x_stat, c_stat);

break;
case 3: // dense

st = ’D’;
int H_dense_ne = 6; // number of elements of H
int A_dense_ne = 6; // number of elements of A
double H_dense[] = {1.0, 0.0, 1.0, 0.0, 0.0, 1.0};
double A_dense[] = {2.0, 1.0, 0.0, 0.0, 1.0, 1.0};
dqp_import(&control, &data, &status, n, m,

"dense", H_ne, NULL, NULL, NULL,
"dense", A_ne, NULL, NULL, NULL);

dqp_solve_qp(&data, &status, n, m, H_dense_ne, H_dense, g, f,
A_dense_ne, A_dense, c_l, c_u, x_l, x_u,
x, c, y, z, x_stat, c_stat);

break;
case 4: // diagonal

st = ’L’;
dqp_import(&control, &data, &status, n, m,

"diagonal", H_ne, NULL, NULL, NULL,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr);

dqp_solve_qp(&data, &status, n, m, H_ne, H_val, g, f,
A_ne, A_val, c_l, c_u, x_l, x_u, x, c, y, z,
x_stat, c_stat);

break;
case 5: // scaled identity

st = ’S’;
dqp_import(&control, &data, &status, n, m,

"scaled_identity", H_ne, NULL, NULL, NULL,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr);

dqp_solve_qp(&data, &status, n, m, H_ne, H_val, g, f,
A_ne, A_val, c_l, c_u, x_l, x_u, x, c, y, z,
x_stat, c_stat);

break;
case 6: // identity

st = ’I’;
dqp_import(&control, &data, &status, n, m,

"identity", H_ne, NULL, NULL, NULL,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr);

dqp_solve_qp(&data, &status, n, m, H_ne, H_val, g, f,
A_ne, A_val, c_l, c_u, x_l, x_u, x, c, y, z,
x_stat, c_stat);

break;
}

dqp_information(&data, &inform, &status);
if(inform.status == 0){

printf("%c:%6i iterations. Optimal objective value = %5.2f status = %1i\n",
st, inform.iter, inform.obj, inform.status);

}else{
printf("%c: DQP_solve exit status = %1i\n", st, inform.status);

}
//printf("x: ");
//for(int i = 0; i < n; i++) printf("%f ", x[i]);
//printf("\n");
//printf("gradient: ");
//for(int i = 0; i < n; i++) printf("%f ", g[i]);
//printf("\n");
// Delete internal workspace
dqp_terminate(&data, &control, &inform);

}
// test shifted least-distance interface
for(int d=1; d <= 1; d++){

// Initialize DQP
dqp_initialize(&data, &control, &status);
// Set user-defined control options
control.f_indexing = false; // C sparse matrix indexing
// Start from 0
double x[] = {0.0,0.0,0.0};
double y[] = {0.0,0.0};
double z[] = {0.0,0.0,0.0};
// Set shifted least-distance data

GALAHAD 4.0 C interfaces to GALAHAD DQP

4.2 dqptf.c 23

double w[] = {1.0,1.0,1.0};
double x_0[] = {0.0,0.0,0.0};
switch(d){

case 1: // sparse co-ordinate storage
st = ’W’;
dqp_import(&control, &data, &status, n, m,

"shifted_least_distance", H_ne, NULL, NULL, NULL,
"coordinate", A_ne, A_row, A_col, NULL);

dqp_solve_sldqp(&data, &status, n, m, w, x_0, g, f,
A_ne, A_val, c_l, c_u, x_l, x_u, x, c, y, z,
x_stat, c_stat);

break;
}

dqp_information(&data, &inform, &status);
if(inform.status == 0){

printf("%c:%6i iterations. Optimal objective value = %5.2f status = %1i\n",
st, inform.iter, inform.obj, inform.status);

}else{
printf("%c: DQP_solve exit status = %1i\n", st, inform.status);

}
//printf("x: ");
//for(int i = 0; i < n; i++) printf("%f ", x[i]);
//printf("\n");
//printf("gradient: ");
//for(int i = 0; i < n; i++) printf("%f ", g[i]);
//printf("\n");
// Delete internal workspace
dqp_terminate(&data, &control, &inform);

}
}

4.2 dqptf.c

This is the same example, but now fortran-style indexing is used.

/* dqptf.c */
/* Full test for the DQP C interface using Fortran sparse matrix indexing */
#include <stdio.h>
#include <math.h>
#include "galahad_dqp.h"
int main(void) {

// Derived types
void *data;
struct dqp_control_type control;
struct dqp_inform_type inform;
// Set problem data
int n = 3; // dimension
int m = 2; // number of general constraints
int H_ne = 3; // Hesssian elements
int H_row[] = {1, 2, 3 }; // row indices, NB lower triangle
int H_col[] = {1, 2, 3}; // column indices, NB lower triangle
int H_ptr[] = {1, 2, 3, 4}; // row pointers
double H_val[] = {1.0, 1.0, 1.0 }; // values
double g[] = {0.0, 2.0, 0.0}; // linear term in the objective
double f = 1.0; // constant term in the objective
int A_ne = 4; // Jacobian elements
int A_row[] = {1, 1, 2, 2}; // row indices
int A_col[] = {1, 2, 2, 3}; // column indices
int A_ptr[] = {1, 3, 5}; // row pointers
double A_val[] = {2.0, 1.0, 1.0, 1.0 }; // values
double c_l[] = {1.0, 2.0}; // constraint lower bound
double c_u[] = {2.0, 2.0}; // constraint upper bound
double x_l[] = {-1.0, - INFINITY, - INFINITY}; // variable lower bound
double x_u[] = {1.0, INFINITY, 2.0}; // variable upper bound
// Set output storage
double c[m]; // constraint values
int x_stat[n]; // variable status
int c_stat[m]; // constraint status
char st;
int status;
printf(" Fortran sparse matrix indexing\n\n");
printf(" basic tests of qp storage formats\n\n");
for(int d=1; d <= 6; d++){

// Initialize DQP
dqp_initialize(&data, &control, &status);
// Set user-defined control options
control.f_indexing = true; // Fortran sparse matrix indexing
// Start from 0
double x[] = {0.0,0.0,0.0};
double y[] = {0.0,0.0};
double z[] = {0.0,0.0,0.0};

C interfaces to GALAHAD DQP GALAHAD 4.0

24 Example Documentation

switch(d){
case 1: // sparse co-ordinate storage

st = ’C’;
dqp_import(&control, &data, &status, n, m,

"coordinate", H_ne, H_row, H_col, NULL,
"coordinate", A_ne, A_row, A_col, NULL);

dqp_solve_qp(&data, &status, n, m, H_ne, H_val, g, f,
A_ne, A_val, c_l, c_u, x_l, x_u, x, c, y, z,
x_stat, c_stat);

break;
printf(" case %1i break\n",d);
case 2: // sparse by rows

st = ’R’;
dqp_import(&control, &data, &status, n, m,

"sparse_by_rows", H_ne, NULL, H_col, H_ptr,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr);

dqp_solve_qp(&data, &status, n, m, H_ne, H_val, g, f,
A_ne, A_val, c_l, c_u, x_l, x_u, x, c, y, z,
x_stat, c_stat);

break;
case 3: // dense

st = ’D’;
int H_dense_ne = 6; // number of elements of H
int A_dense_ne = 6; // number of elements of A
double H_dense[] = {1.0, 0.0, 1.0, 0.0, 0.0, 1.0};
double A_dense[] = {2.0, 1.0, 0.0, 0.0, 1.0, 1.0};
dqp_import(&control, &data, &status, n, m,

"dense", H_ne, NULL, NULL, NULL,
"dense", A_ne, NULL, NULL, NULL);

dqp_solve_qp(&data, &status, n, m, H_dense_ne, H_dense, g, f,
A_dense_ne, A_dense, c_l, c_u, x_l, x_u,
x, c, y, z, x_stat, c_stat);

break;
case 4: // diagonal

st = ’L’;
dqp_import(&control, &data, &status, n, m,

"diagonal", H_ne, NULL, NULL, NULL,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr);

dqp_solve_qp(&data, &status, n, m, H_ne, H_val, g, f,
A_ne, A_val, c_l, c_u, x_l, x_u, x, c, y, z,
x_stat, c_stat);

break;
case 5: // scaled identity

st = ’S’;
dqp_import(&control, &data, &status, n, m,

"scaled_identity", H_ne, NULL, NULL, NULL,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr);

dqp_solve_qp(&data, &status, n, m, H_ne, H_val, g, f,
A_ne, A_val, c_l, c_u, x_l, x_u, x, c, y, z,
x_stat, c_stat);

break;
case 6: // identity

st = ’I’;
dqp_import(&control, &data, &status, n, m,

"identity", H_ne, NULL, NULL, NULL,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr);

dqp_solve_qp(&data, &status, n, m, H_ne, H_val, g, f,
A_ne, A_val, c_l, c_u, x_l, x_u, x, c, y, z,
x_stat, c_stat);

break;
}

dqp_information(&data, &inform, &status);
if(inform.status == 0){

printf("%c:%6i iterations. Optimal objective value = %5.2f status = %1i\n",
st, inform.iter, inform.obj, inform.status);

}else{
printf("%c: DQP_solve exit status = %1i\n", st, inform.status);

}
//printf("x: ");
//for(int i = 0; i < n; i++) printf("%f ", x[i]);
//printf("\n");
//printf("gradient: ");
//for(int i = 0; i < n; i++) printf("%f ", g[i]);
//printf("\n");
// Delete internal workspace
dqp_terminate(&data, &control, &inform);

}
// test shifted least-distance interface
for(int d=1; d <= 1; d++){

// Initialize DQP
dqp_initialize(&data, &control, &status);
// Set user-defined control options
control.f_indexing = true; // Fortran sparse matrix indexing
// Start from 0
double x[] = {0.0,0.0,0.0};
double y[] = {0.0,0.0};
double z[] = {0.0,0.0,0.0};

GALAHAD 4.0 C interfaces to GALAHAD DQP

4.2 dqptf.c 25

// Set shifted least-distance data
double w[] = {1.0,1.0,1.0};
double x_0[] = {0.0,0.0,0.0};
switch(d){

case 1: // sparse co-ordinate storage
st = ’W’;
dqp_import(&control, &data, &status, n, m,

"shifted_least_distance", H_ne, NULL, NULL, NULL,
"coordinate", A_ne, A_row, A_col, NULL);

dqp_solve_sldqp(&data, &status, n, m, w, x_0, g, f,
A_ne, A_val, c_l, c_u, x_l, x_u, x, c, y, z,
x_stat, c_stat);

break;
}

dqp_information(&data, &inform, &status);
if(inform.status == 0){

printf("%c:%6i iterations. Optimal objective value = %5.2f status = %1i\n",
st, inform.iter, inform.obj, inform.status);

}else{
printf("%c: DQP_solve exit status = %1i\n", st, inform.status);

}
//printf("x: ");
//for(int i = 0; i < n; i++) printf("%f ", x[i]);
//printf("\n");
//printf("gradient: ");
//for(int i = 0; i < n; i++) printf("%f ", g[i]);
//printf("\n");
// Delete internal workspace
dqp_terminate(&data, &control, &inform);

}
}

C interfaces to GALAHAD DQP GALAHAD 4.0

26 Example Documentation

GALAHAD 4.0 C interfaces to GALAHAD DQP

Index

dqp_control_type, 8
dqp_import

galahad_dqp.h, 13
dqp_inform_type, 11
dqp_information

galahad_dqp.h, 19
dqp_initialize

galahad_dqp.h, 12
dqp_read_specfile

galahad_dqp.h, 13
dqp_reset_control

galahad_dqp.h, 15
dqp_solve_qp

galahad_dqp.h, 15
dqp_solve_sldqp

galahad_dqp.h, 17
dqp_terminate

galahad_dqp.h, 20
dqp_time_type, 11

galahad_dqp.h, 7
dqp_import, 13
dqp_information, 19
dqp_initialize, 12
dqp_read_specfile, 13
dqp_reset_control, 15
dqp_solve_qp, 15
dqp_solve_sldqp, 17
dqp_terminate, 20

	1 GALAHAD C package dqp
	1.1 Introduction
	1.1.1 Purpose
	1.1.2 Authors
	1.1.3 Originally released
	1.1.4 Terminology
	1.1.5 Method
	1.1.6 Reference
	1.1.7 Call order
	1.1.8 Unsymmetric matrix storage formats
	1.1.8.1 Dense storage format
	1.1.8.2 Sparse co-ordinate storage format
	1.1.8.3 Sparse row-wise storage format

	1.1.9 Symmetric matrix storage formats
	1.1.9.1 Dense storage format
	1.1.9.2 Sparse co-ordinate storage format
	1.1.9.3 Sparse row-wise storage format
	1.1.9.4 Diagonal storage format
	1.1.9.5 Multiples of the identity storage format
	1.1.9.6 The identity matrix format

	2 File Index
	2.1 File List

	3 File Documentation
	3.1 galahad_dqp.h File Reference
	3.1.1 Data Structure Documentation
	3.1.1.1 struct dqp_control_type
	3.1.1.2 struct dqp_time_type
	3.1.1.3 struct dqp_inform_type

	3.1.2 Function Documentation
	3.1.2.1 dqp_initialize()
	3.1.2.2 dqp_read_specfile()
	3.1.2.3 dqp_import()
	3.1.2.4 dqp_reset_control()
	3.1.2.5 dqp_solve_qp()
	3.1.2.6 dqp_solve_sldqp()
	3.1.2.7 dqp_information()
	3.1.2.8 dqp_terminate()

	4 Example Documentation
	4.1 dqpt.c
	4.2 dqptf.c

	Index

