
GALAHAD DGO

USER DOCUMENTATION GALAHAD Optimization Library version 4.0

1 SUMMARY

This package uses a deterministic partition-and-bound trust-region method to find an approximation to the

global minimizer of a differentiable objective function f (x) of n variables x, subject to a finite set of simple

bounds xl ≤ x ≤ xu on the variables. The method offers the choice of direct and iterative solution of the key trust-

region subproblems, and is suitable for large problems. First derivatives are required, and if second derivatives can

be calculated, they will be exploited—if the product of second derivatives with a vector may be found but not the

derivatives themselves, that may also be exploited.

Although there are theoretical guarantees, these may require a large number of evaluations as the dimension and

nonconvexity increase. The alternative GALAHAD package BGO may sometimes be preferred.

ATTRIBUTES — Versions: GALAHAD DGO single, GALAHAD DGO double. Uses: GALAHAD CLOCK, GALAHAD SY-

MBOLS, GALAHAD HASH, GALAHAD NLPT, GALAHAD USERDATA, GALAHAD SPECFILE, GALAHAD SPACE, GALAHAD NORMS,

GALAHAD UGO and GALAHAD TRB. Date: July 2021. Origin: J. Fowkes and N. I. M. Gould, Rutherford Appleton

Laboratory. Language: Fortran 95 + TR 15581 or Fortran 2003.

2 HOW TO USE THE PACKAGE

Access to the package requires a USE statement such as

Single precision version

USE GALAHAD DGO single

Double precision version

USE GALAHAD DGO double

If it is required to use both modules at the same time, the derived types SMT type, GALAHAD userdata type, DGO time -

type, DGO control type, DGO inform type, DGO data type and NLPT problem type, (Section 2.3) and the sub-

routines DGO initialize, DGO solve, DGO terminate, (Section 2.4) and DGO read specfile (Section 2.8) must be

renamed on one of the USE statements.

2.1 Matrix storage formats

If available, the Hessian matrix H = ∇xx f (x) may be stored in a variety of input formats.

2.1.1 Dense storage format

The matrix H is stored as a compact dense matrix by rows, that is, the values of the entries of each row in turn are

stored in order within an appropriate real one-dimensional array. Since H is symmetric, only the lower triangular part

(that is the part hi j for 1 ≤ j ≤ i ≤ n) need be held. In this case the lower triangle should be stored by rows, that is

component i∗ (i−1)/2+ j of the storage array H%val will hold the value hi j (and, by symmetry, h ji) for 1 ≤ j ≤ i ≤ n.

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD DGO (March 18, 2022) 1

DGO GALAHAD

2.1.2 Sparse co-ordinate storage format

Only the nonzero entries of the matrices are stored. For the l-th entry, 1 ≤ l ≤ H%ne, of H, its row index i, column

index j and value hi j, 1 ≤ j ≤ i ≤ n, are stored in the l-th components of the integer arrays H%row, H%col and real

array H%val, respectively. Note that only the entries in the lower triangle should be stored.

2.1.3 Sparse row-wise storage format

Again only the nonzero entries are stored, but this time they are ordered so that those in row i appear directly before

those in row i+ 1. For the i-th row of H, the i-th component of the integer array H%ptr holds the position of the first

entry in this row, while H%ptr (n+ 1) holds the total number of entries plus one. The column indices j, 1 ≤ j ≤ i,

and values hi j of the entries in the i-th row are stored in components l = H%ptr(i), . . . ,H%ptr (i+1)−1 of the integer

array H%col, and real array H%val, respectively. Note that as before only the entries in the lower triangle should be

stored. For sparse matrices, this scheme almost always requires less storage than its predecessor.

2.1.4 Diagonal storage format

If H is diagonal (i.e., hi j = 0 for all 1 ≤ i 6= j ≤ n) only the diagonals entries hii, 1 ≤ i ≤ n, need be stored, and the first

n components of the array H%val may be used for the purpose.

2.2 Integer kinds

We use the term long INTEGER to denote INTEGER(kind=long), where long = selected int kind(18)).

2.3 The derived data types

Seven derived data types are accessible from the package.

2.3.1 The derived data type for holding matrices

The derived data type SMT TYPE is used to hold the Hessian matrix H if this is available. The components of SMT TYPE

used here are:

n is a scalar component of type default INTEGER, that holds the dimension of the matrix.

ne is a scalar variable of type default INTEGER, that holds the number of matrix entries.

type is a rank-one allocatable array of type default CHARACTER, that is used to indicate the matrix storage scheme

used. Its precise length and content depends on the type of matrix to be stored (see §2.3.2).

val is a rank-one allocatable array of type default REAL (double precision in GALAHAD DGO double) and dimension

at least ne, that holds the values of the entries. Each pair of off-diagonal entries hi j = h ji of the symmetric

matrix H is represented as a single entry (see §2.1.1–2.1.3). Any duplicated entries that appear in the sparse

co-ordinate or row-wise schemes will be summed.

row is a rank-one allocatable array of type default INTEGER, and dimension at least ne, that may hold the row indices

of the entries. (see §2.1.2).

col is a rank-one allocatable array of type default INTEGER, and dimension at least ne, that may hold the column

indices of the entries (see §2.1.2–2.1.3).

ptr is a rank-one allocatable array of type default INTEGER, and dimension at least n + 1, that may hold the pointers

to the first entry in each row (see §2.1.3).

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

2 DGO (March 18, 2022) GALAHAD

GALAHAD DGO

2.3.2 The derived data type for holding the problem

The derived data type NLPT problem type is used to hold the problem. The relevant components of NLPT problem type

are:

n is a scalar variable of type default INTEGER, that holds the number of optimization variables, n.

H is scalar variable of type SMT TYPE that holds the Hessian matrix H. The following components are used here:

H%type is an allocatable array of rank one and type default CHARACTER, that is used to indicate the storage

scheme used. If the dense storage scheme (see Section 2.1.1) is used, the first five components of H%type

must contain the string DENSE. For the sparse co-ordinate scheme (see Section 2.1.2), the first ten com-

ponents of H%type must contain the string COORDINATE, for the sparse row-wise storage scheme (see

Section 2.1.3), the first fourteen components of H%type must contain the string SPARSE BY ROWS, and for

the diagonal storage scheme (see Section 2.1.4), the first eight components of H%type must contain the

string DIAGONAL.

For convenience, the procedure SMT put may be used to allocate sufficient space and insert the required

keyword into H%type. For example, if nlp is of derived type DGO problem type and involves a Hessian

we wish to store using the co-ordinate scheme, we may simply

CALL SMT_put(nlp%H%type, ’COORDINATE’)

See the documentation for the GALAHAD package SMT for further details on the use of SMT put.

H%ne is a scalar variable of type default INTEGER, that holds the number of entries in the lower triangular part

of H in the sparse co-ordinate storage scheme (see Section 2.1.2). It need not be set for any of the other

three schemes.

H%val is a rank-one allocatable array of type default REAL (double precision in GALAHAD DGO double), that

holds the values of the entries of the lower triangular part of the Hessian matrix H in any of the storage

schemes discussed in Section 2.1.

H%row is a rank-one allocatable array of type default INTEGER, that holds the row indices of the lower triangu-

lar part of H in the sparse co-ordinate storage scheme (see Section 2.1.2). It need not be allocated for any

of the other three schemes.

H%col is a rank-one allocatable array variable of type default INTEGER, that holds the column indices of the

lower triangular part of H in either the sparse co-ordinate (see Section 2.1.2), or the sparse row-wise (see

Section 2.1.3) storage scheme. It need not be allocated when the dense or diagonal storage schemes are

used.

H%ptr is a rank-one allocatable array of dimension n+1 and type default INTEGER, that holds the starting posi-

tion of each row of the lower triangular part of H, as well as the total number of entries plus one, in the

sparse row-wise storage scheme (see Section 2.1.3). It need not be allocated when the other schemes are

used.

G is a rank-one allocatable array of dimension n and type default REAL (double precision in GALAHAD DGO double),

that holds the gradient g of the objective function. The j-th component of G, j = 1, . . . ,n, contains g j. These are

equivalently the values z of estimates of the dual variables corresponding to the simple bound constraints (see

Section 4).

f is a scalar variable of type default REAL (double precision in GALAHAD DGO double), that holds the value of the

objective function.

X l is a rank-one allocatable array of dimension n and type default REAL (double precision in GALAHAD DGO double),

that holds the vector of lower bounds xl on the the variables. The j-th component of X l, j = 1, . . . ,n, contains

xl
j. Infinite bounds are allowed by setting the corresponding components of X l to any value smaller than

-infinity, where infinity is a component of the control array control (see Section 2.3.3).

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD DGO (March 18, 2022) 3

DGO GALAHAD

X u is a rank-one allocatable array of dimension n and type default REAL (double precision in GALAHAD DGO double),

that holds the vector of upper bounds xu on the variables. The j-th component of X u, j = 1, . . . ,n, contains

xu
j . Infinite bounds are allowed by setting the corresponding components of X u to any value larger than that

infinity, where infinity is a component of the control array control (see Section 2.3.3).

X is a rank-one allocatable array of dimension n and type default REAL (double precision in GALAHAD DGO double),

that holds the values x of the optimization variables. The j-th component of X, j = 1, . . . ,n, contains x j.

pname is a scalar variable of type default CHARACTER and length 10, which contains the “name” of the problem for

printing. The default “empty” string is provided.

VNAMES is a rank-one allocatable array of dimension n and type default CHARACTER and length 10, whose j-th entry

contains the “name” of the j-th variable for printing. This is only used if “debug”printingcontrol%print level

> 4) is requested, and will be ignored if the array is not allocated.

2.3.3 The derived data type for holding control parameters

The derived data type DGO control type is used to hold controlling data. Default values may be obtained by calling

DGO initialize (see Section 2.4.1), while components may also be changed by calling GALAHAD DGO read spec

(see Section 2.8.1). The components of DGO control type are:

error is a scalar variable of type default INTEGER, that holds the stream number for error messages. Printing of error

messages in DGO solve and DGO terminate is suppressed if error ≤ 0. The default is error = 6.

out is a scalar variable of type default INTEGER, that holds the stream number for informational messages. Printing

of informational messages in DGO solve is suppressed if out < 0. The default is out = 6.

print level is a scalar variable of type default INTEGER, that is used to control the amount of informational output

which is required. No informational output will occur if print level ≤ 0. If print level = 1, a single line

of output will be produced for each iteration of the process. If print level ≥ 2, this output will be increased

to provide significant detail of each iteration. The default is print level = 0.

start print is a scalar variable of type default INTEGER, that specifies the first iteration for which printing will occur

in DGO solve. If start print is negative, printing will occur from the outset. The default is start print =

-1.

stop print is a scalar variable of type default INTEGER, that specifies the last iteration for which printing will occur

in DGO solve. If stop print is negative, printing will occur once it has been started by start print. The

default is stop print = -1.

print gap is a scalar variable of type default INTEGER. Once printing has been started, output will occur once every

print gap iterations. If print gap is no larger than 1, printing will be permitted on every iteration. The default

is print gap = 1.

maxit is a scalar variable of type default INTEGER, that holds the maximum number of iterations which will be

allowed in DGO solve. The default is maxit = 1000.

max evals is a scalar variable of type default INTEGER, that gives the maximum number of function evaluations that

are allowed. The default is max evals = 10000.

dictionary size is a scalar variable of type default INTEGER, that gives the size of the initial hash dictionary. The

default is dictionary size = 100000.

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

4 DGO (March 18, 2022) GALAHAD

GALAHAD DGO

alive unit is a scalar variable of type default INTEGER. If alive unit> 0, a temporary file named alive file (see

below) will be created on stream number alive unit on initial entry to GALAHAD DGO solve, and execution of

GALAHAD DGO solve will continue so long as this file continues to exist. Thus, a user may terminate execution

simply by removing the temporary file from this unit. If alive unit ≤ 0, no temporary file will be created, and

execution cannot be terminated in this way. The default is alive unit = 60.

infinity is a scalar variable of type default REAL (double precision in GALAHAD DGO double), that is used to specify

which constraint bounds are infinite. Any bound larger than infinity in modulus will be regarded as infinite.

The default is infinity = 1019.

lipschitz lower bound is a scalar variable of type default REAL (double precision in GALAHAD DGO double), that

provides a lower bound on the Lipschitz constant for the gradient. This must be non-negative (and not zero

unless the function is constant). The default is lipschitz lower bound = 10−6.

lipschitz reliability and lipschitz control are scalar variables of type default REAL (double precision in

GALAHAD DGO double), that are used to provide a reliable estimate of the Lipschitz constant in the current

sub-box. Specifically, the Lipschitz constant used will be lipschitz reliability + max(1, n - 1) *

lipschitz control / iteration counter times the largest value observed. The defaults are lipschitz reliab-

ility = 2.0 and lipschitz control = 50.

stop length is a scalar variable of type default REAL (double precision in GALAHAD DGO double), that is used to stop

the iteration. This will happen if the length of the “diagonal” in the sub-box with the smallest-found objective

function is smaller than stop length times that of the original bound box. The default is stop length = 10−4.

stop f is a scalar variable of type default REAL (double precision in GALAHAD DGO double), that is used to stop the

iteration. This will happen if the gap between the best objective value found and the smallest lower bound is

smaller than stop f. The default is stop f = 10−4.

obj unbounded is a scalar variable of type default REAL (double precision in GALAHAD DGO double), that specifies

smallest value of the objective function that will be tolerated before the problem is declared to be unbounded

from below. The default is potential unbounded = −u−2, where u is EPSILON(1.0) (EPSILON(1.0D0) in

GALAHAD DGO double).

cpu time limit is a scalar variable of type default REAL (double precision in GALAHAD DGO double), that is used to

specify the maximum permitted CPU time. Any negative value indicates no limit will be imposed. The default

is cpu time limit = - 1.0.

clock time limit is a scalar variable of type default REAL (double precision in GALAHAD DGO double), that is used

to specify the maximum permitted elapsed system clock time. Any negative value indicates no limit will be

imposed. The default is clock time limit = - 1.0.

hessian available is a scalar variable of type default LOGICAL, that should be set .TRUE. if the user will provide

second derivatives (either by providing an appropriate evaluation routine to the solver or by reverse commu-

nication, see Section 2.6), and .FALSE. if the second derivatives are not explicitly available. The default is

hessian available = .TRUE..

prune is a scalar variable of type default LOGICAL, that should be set .TRUE. if sub-boxes that cannot contain the

global minimizer be pruned (i.e., removed from further consideration), and .FALSE. if a no local pruning is

required. The default is prune = .TRUE..

perform local optimization is a scalar variable of type default LOGICAL, that should be set .TRUE. if approximate

minimizers are to be improved by judicious local minimization, and .FALSE. if a no local improvement is

required. The default is perform local optimization = .TRUE..

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD DGO (March 18, 2022) 5

DGO GALAHAD

space critical is a scalar variable of type default LOGICAL, that must be set .TRUE. if space is critical when

allocating arrays and .FALSE. otherwise. The package may run faster if space critical is .FALSE. but at the

possible expense of a larger storage requirement. The default is space critical = .FALSE..

deallocate error fatal is a scalar variable of type default LOGICAL, that must be set .TRUE. if the user wishes to

terminate execution if a deallocation fails, and .FALSE. if an attempt to continue will be made. The default is

deallocate error fatal = .FALSE..

alive file is a scalar variable of type default CHARACTER and length 30, that gives the name of the temporary file

whose removal from stream number alive unit terminates execution of GALAHAD DGO solve. The default is

alive unit = ALIVE.d.

prefix is a scalar variable of type default CHARACTER and length 30, that may be used to provide a user-selected

character string to preface every line of printed output. Specifically, each line of output will be prefaced by

the string prefix(2:LEN(TRIM(prefix))-1), thus ignoreing the first and last non-null components of the

supplied string. If the user does not want to preface lines by such a string, they may use the default prefix =

"".

HASH control is a scalar variable of type HASH control type whose components are used to control the the hash

table used to store the dictionary of vertices of the sub-boxes maintained by the package GALAHAD HASH. See the

specification sheet for the package GALAHAD HASH for details, and appropriate default values.

TRB control is a scalar variable of type TRB control type whose components are used to control the local multi-

variate optimization aspects of the calculation, as performed by the package GALAHAD TRB. See the specification

sheet for the package GALAHAD TRB for details, and appropriate default values.

UGO control is a scalar variable of type UGO control type whose components are used to control the univariate

global optimization calculation (if any), performed by the package GALAHAD UGO. See the specification sheet for

the package GALAHAD UGO for details, and appropriate default values.

2.3.4 The derived data type for holding timing information

The derived data type DGO time type is used to hold elapsed CPU and system clock times for the various parts of the

calculation. The components of DGO time type are:

total is a scalar variable of type default REAL, that gives the CPU total time spent in the package.

univariate global is a scalar variable of type default REAL (double precision in GALAHAD DGO double), that gives

the CPU time spent performing univariate global optimization.

multivariate local is a scalar variable of type default REAL (double precision in GALAHAD DGO double), that gives

the CPU time spent performing multivariate local optimization.

clock total is a scalar variable of type default REAL, that gives the total elapsed system clock time spent in the

package.

clock univariate global is a scalar variable of type default REAL (double precision in GALAHAD DGO double), that

gives the elapsed system clock time spent performing univariate global optimization.

clock multivariate local is a scalar variable of type default REAL (double precision in GALAHAD DGO double),

that gives the elapsed system clock time spent performing multivariate local optimization.

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

6 DGO (March 18, 2022) GALAHAD

GALAHAD DGO

2.3.5 The derived data type for holding informational parameters

The derived data type DGO inform type is used to hold parameters that give information about the progress and needs

of the algorithm. The components of DGO inform type are:

status is a scalar variable of type default INTEGER, that gives the exit status of the algorithm. See Sections 2.6 and

2.7 for details.

alloc status is a scalar variable of type default INTEGER, that gives the status of the last attempted array allocation

or deallocation. This will be 0 if status = 0.

bad alloc is a scalar variable of type default CHARACTER and length 80, that gives the name of the last internal array

for which there were allocation or deallocation errors. This will be the null string if status = 0.

f eval is a scalar variable of type default INTEGER, that gives the total number of objective function evaluations

performed.

g eval is a scalar variable of type default INTEGER, that gives the total number of objective function gradient evalua-

tions performed.

h eval is a scalar variable of type default INTEGER, that gives the total number of objective function Hessian evalua-

tions performed.

obj is a scalar variable of type default REAL (double precision in GALAHAD DGO double), that holds the value of the

objective function at the best estimate of the solution found.

norm pg is a scalar variable of type default REAL (double precision in GALAHAD DGO double), that holds the value of

the norm of the projected gradient of the objective function at the best estimate of the solution found.

length ratiois a scalar variable of type default REAL (double precision in GALAHAD DGO double), that holds the ratio of the

final to the initial box lengths.

f gap is a scalar variable of type default REAL (double precision in GALAHAD DGO double), that holds the gap between

the best objective value found and the lowest bound.

why stop is a scalar variable of type default CHARACTER and length 1 that summarises why the iteration stopped. It

will be ’D’ if the box length is small enough, ’F’ if the objective gap is small enough, and ’ ’ otherwise.

time is a scalar variable of type DGO time type whose components are used to hold elapsed elapsed CPU and system

clock times for the various parts of the calculation (see Section 2.3.4).

HASH inform is a scalar variable of type HASH inform type whose components give information about the hash

table used to store the dictionary of vertices of the sub-boxes maintained by the package GALAHAD HASH. See the

specification sheet for the package GALAHAD HASH for details.

TRB inform is a scalar variable of type TRB inform type whose components give information about the progress and

needs of the local multivariate optimization stages of the algorithm performed by the package GALAHAD TRB. See

the specification sheet for the package GALAHAD TRB for details.

UGO inform is a scalar variable of type UGO inform type whose components give information about the progress

and needs of the univariate global optimization stages of the algorithm performed by the package GALAHAD UGO.

See the specification sheet for the package GALAHAD UGO for details.

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD DGO (March 18, 2022) 7

DGO GALAHAD

2.3.6 The derived data type for holding problem data

The derived data type DGO data type is used to hold all the data for a particular problem, or sequences of problems

with the same structure, between calls of DGO procedures. This data should be preserved, untouched (except as directed

on return from GALAHAD DGO solve with positive values of inform%status, see Section 2.6), from the initial call to

DGO initialize to the final call to DGO terminate.

2.3.7 The derived data type for holding user data

The derived data type GALAHAD userdata type is available to allow the user to pass data to and from user-supplied

subroutines for function and derivative calculations (see Section 2.5). Components of variables of type GALAHAD user-

data type may be allocated as necessary. The following components are available:

integer is a rank-one allocatable array of type default INTEGER.

real is a rank-one allocatable array of type default REAL (double precision in GALAHAD DGO double)

complex is a rank-one allocatable array of type default COMPLEX (double precision complex in GALAHAD DGO double).

character is a rank-one allocatable array of type default CHARACTER.

logical is a rank-one allocatable array of type default LOGICAL.

integer pointer is a rank-one pointer array of type default INTEGER.

real pointer is a rank-one pointer array of type default REAL (double precision in GALAHAD DGO double)

complex pointer is a rank-one pointer array of type default COMPLEX (double precision complex in GALAHAD DGO -

double).

character pointer is a rank-one pointer array of type default CHARACTER.

logical pointer is a rank-one pointer array of type default LOGICAL.

2.4 Argument lists and calling sequences

There are three procedures for user calls (see Section 2.8 for further features):

1. The subroutine DGO initialize is used to set default values, and initialize private data, before solving one or

more problems with the same sparsity and bound structure.

2. The subroutine DGO solve is called to solve the problem.

3. The subroutine DGO terminate is provided to allow the user to automatically deallocate array components of

the private data, allocated by DGO solve, at the end of the solution process. It is important to do this if the data

object is re-used for another problem with a different structure since DGO initialize cannot test for this

situation, and any existing associated targets will subsequently become unreachable.

We use square brackets [] to indicate OPTIONAL arguments.

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

8 DGO (March 18, 2022) GALAHAD

GALAHAD DGO

2.4.1 The initialization subroutine

Default values are provided as follows:

CALL DGO initialize(data, control, inform)

data is a scalar INTENT(INOUT) argument of type DGO data type (see Section 2.3.6). It is used to hold data about

the problem being solved.

control is a scalar INTENT(OUT) argument of type DGO control type (see Section 2.3.3). On exit, control con-

tains default values for the components as described in Section 2.3.3. These values should only be changed after

calling DGO initialize.

inform is a scalar INTENT(OUT) argument of type DGO inform type (see Section 2.3.5). A successful call to

DGO initialize is indicated when the component status has the value 0. For other return values of status,

see Section 2.7.

2.4.2 The minimization subroutine

The minimization algorithm is called as follows:

CALL DGO solve(nlp, control, inform, data, userdata[, eval F, eval G, &

eval H, eval HPROD, eval SHPROD, eval PREC])

nlp is a scalar INTENT(INOUT) argument of type NLPT problem type (see Section 2.3.2). It is used to hold data

about the problem being solved. For a new problem, the user must allocate all the array components, and set

values for nlp%n and the required integer components of nlp%H if second derivatives will be used. Users are free

to choose whichever of the matrix formats described in Section 2.1 is appropriate for H for their application.

The component nlp%X must be set to an initial estimate, x0, of the minimization variables. A good choice will

increase the speed of the package, but the underlying method is designed to converge (at least to a local solution)

from an arbitrary initial guess.

On exit, the component nlp%X will contain the best estimates of the minimization variables x, while nlp%G will

contain the best estimates of the dual variables z.

Restrictions: nlp%n > 0 and nlp%H%type ∈ {’DENSE’,’COORDINATE’,’SPARSE BY ROWS’,’DIAGONAL’}.

control is a scalar INTENT(IN) argument of type DGO control type (see Section 2.3.3). Default values may be

assigned by calling DGO initialize prior to the first call to DGO solve.

inform is a scalar INTENT(INOUT) argument of type DGO inform type (see Section 2.3.5). On initial entry, the

component status must be set to the value 1. Other entries need note be set. A successful call to DGO solve is

indicated when the component status has the value 0. For other return values of status, see Sections 2.6 and

2.7.

data is a scalar INTENT(INOUT) argument of type DGO data type (see Section 2.3.6). It is used to hold data about

the problem being solved. With the possible exceptions of the components eval status and U (see Section 2.6),

it must not have been altered by the user since the last call to DGO initialize.

userdata is a scalar INTENT(INOUT) argument of type GALAHAD userdata type whose components may be used to

communicate user-supplied data to and from the OPTIONAL subroutines eval F, eval G, eval H and eval HPROD

(see Section 2.3.7).

eval F is an OPTIONAL user-supplied subroutine whose purpose is to evaluate the value of the objective function f (x)
at a given vector x. See Section 2.5.1 for details. If eval F is present, it must be declared EXTERNAL in the

calling program. If eval F is absent, GALAHAD DGO solve will use reverse communication to obtain objective

function values (see Section 2.6).

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD DGO (March 18, 2022) 9

DGO GALAHAD

eval G is an OPTIONAL user-supplied subroutine whose purpose is to evaluate the value of the gradient of the objective

function ∇x f (x) at a given vector x. See Section 2.5.2 for details. If eval G is present, it must be declared

EXTERNAL in the calling program. If eval G is absent, GALAHAD DGO solve will use reverse communication to

obtain gradient values (see Section 2.6).

eval H is an OPTIONAL user-supplied subroutine whose purpose is to evaluate the value of the Hessian of the objective

function ∇xx f (x) at a given vector x. See Section 2.5.3 for details. If eval H is present, it must be declared

EXTERNAL in the calling program. If eval H is absent, GALAHAD DGO solve will use reverse communication to

obtain Hessian function values (see Section 2.6).

eval HPROD is an OPTIONAL user-supplied subroutine whose purpose is to evaluate the value of the product ∇xx f (x)v
of the Hessian of the objective function ∇xx f (x) with a given vector v. See Section 2.5.4 for details. If

eval HPROD is present, it must be declared EXTERNAL in the calling program. If eval HPROD is absent, GA-

LAHAD DGO solve will use reverse communication to obtain Hessian-vector products (see Section 2.6).

eval SHPROD is an OPTIONAL user-supplied subroutine whose purpose is to evaluate the value of the product ∇xx f (x)v
of the Hessian of the objective function u = ∇xx f (x) with a given sparse vector v, and to return the nonzero

components of the resulting u. See Section 2.5.5 for details. If eval SHPROD is present, it must be declared

EXTERNAL in the calling program. If eval SHPROD is absent, GALAHAD DGO solve will use reverse communica-

tion to obtain Hessian-sparse-vector products (see Section 2.6).

eval PREC is an OPTIONAL user-supplied subroutine whose purpose is to evaluate the value of the product P(x)v of

the user’s preconditioner with a given vector v. See Section 2.5.6 for details. If eval PREC is present, it must

be declared EXTERNAL in the calling program. If eval PREC is absent, GALAHAD DGO solve will use reverse

communication to obtain products with the preconditioner (see Section 2.6).

2.4.3 The termination subroutine

All previously allocated arrays are deallocated as follows:

CALL DGO terminate(data, control, inform)

data is a scalar INTENT(INOUT) argument of type DGO data type exactly as for DGO solve, which must not have

been altered by the user since the last call to DGO initialize. On exit, array components will have been

deallocated.

control is a scalar INTENT(IN) argument of type DGO control type exactly as for DGO solve.

inform is a scalar INTENT(OUT) argument of type DGO inform type exactly as for DGO solve. Only the component

status will be set on exit, and a successful call to DGO terminate is indicated when this component status

has the value 0. For other return values of status, see Section 2.7.

2.5 Function and derivative values

2.5.1 The objective function value via internal evaluation

If the argument eval F is present when calling GALAHAD DGO solve, the user is expected to provide a subroutine of

that name to evaluate the value of the objective function f (x). The routine must be specified as

SUBROUTINE eval_F(status, X, userdata, f)

whose arguments are as follows:

status is a scalar INTENT(OUT) argument of type default INTEGER, that should be set to 0 if the routine has been

able to evaluate the objective function and to a non-zero value if the evaluation has not been possible.

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

10 DGO (March 18, 2022) GALAHAD

GALAHAD DGO

X is a rank-one INTENT(IN) array argument of type default REAL (double precision in GALAHAD DGO double)

whose components contain the vector x.

userdata is a scalar INTENT(INOUT) argument of type GALAHAD userdata type whose components may be used

to communicate user-supplied data to and from the subroutines eval F, eval G, eval H, eval HPROD and

eval PREC (see Section 2.3.7).

f is a scalar INTENT(OUT) argument of type default REAL (double precision in GALAHAD DGO double), that should

be set to the value of the objective function f (x) evaluated at the vector x input in X.

2.5.2 Gradient values via internal evaluation

If the argument eval G is present when calling GALAHAD DGO solve, the user is expected to provide a subroutine of

that name to evaluate the value of the gradient the objective function ∇x f (x). The routine must be specified as

SUBROUTINE eval_G(status, X, userdata, G)

whose arguments are as follows:

status is a scalar INTENT(OUT) argument of type default INTEGER, that should be set to 0 if the routine has been able

to evaluate the gradient of the objective function and to a non-zero value if the evaluation has not been possible.

X is a rank-one INTENT(IN) array argument of type default REAL (double precision in GALAHAD DGO double)

whose components contain the vector x.

userdata is a scalar INTENT(INOUT) argument of type GALAHAD userdata type whose components may be used

to communicate user-supplied data to and from the subroutines eval F, eval G, eval H, eval HPROD and

eval PREC (see Section 2.3.7).

G is a rank-one INTENT(OUT) argument of type default REAL (double precision in GALAHAD DGO double), whose

components should be set to the values of the gradient of the objective function ∇x f (x) evaluated at the vector

x input in X.

2.5.3 Hessian values via internal evaluation

If the argument eval H is present when calling GALAHAD DGO solve, the user is expected to provide a subroutine of

that name to evaluate the values of the Hessian of the objective function ∇xx f (x). The routine must be specified as

SUBROUTINE eval_H(status, X, userdata, Hval)

whose arguments are as follows:

status is a scalar INTENT(OUT) argument of type default INTEGER, that should be set to 0 if the routine has been able

to evaluate the Hessian of the objective function and to a non-zero value if the evaluation has not been possible.

X is a rank-one INTENT(IN) array argument of type default REAL (double precision in GALAHAD DGO double)

whose components contain the vector x.

userdata is a scalar INTENT(INOUT) argument of type GALAHAD userdata type whose components may be used

to communicate user-supplied data to and from the subroutines eval F, eval G, eval H, eval HPROD and

eval PREC (see Section 2.3.7).

Hval is a scalar INTENT(OUT) argument of type default REAL (double precision in GALAHAD DGO double), whose

components should be set to the values of the Hessian of the objective function ∇xx f (x) evaluated at the vector

x input in X. The values should be input in the same order as that in which the array indices were given in nlp%H.

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD DGO (March 18, 2022) 11

DGO GALAHAD

2.5.4 Hessian-vector products via internal evaluation

If the argument eval HPROD is present when calling GALAHAD DGO solve, the user is expected to provide a subroutine

of that name to evaluate the sum u+∇xx f (x)v involving the product of the Hessian of the objective function ∇xx f (x)
with a given vector v. The routine must be specified as

SUBROUTINE eval_HPROD(status, X, userdata, U, V, got_h)

whose arguments are as follows:

status is a scalar INTENT(OUT) argument of type default INTEGER, that should be set to 0 if the routine has been

able to evaluate the sum u+∇xx f (x)v and to a non-zero value if the evaluation has not been possible.

X is a rank-one INTENT(IN) array argument of type default REAL (double precision in GALAHAD DGO double)

whose components contain the vector x.

userdata is a scalar INTENT(INOUT) argument of type GALAHAD userdata type whose components may be used

to communicate user-supplied data to and from the subroutines eval F, eval G, eval H, eval HPROD and

eval PREC (see Section 2.3.7).

U is a rank-one INTENT(INOUT) array argument of type default REAL (double precision in GALAHAD DGO double)

whose components on input contain the vector u and on output the sum u+∇xx f (x)v.

V is a rank-one INTENT(IN) array argument of type default REAL (double precision in GALAHAD DGO double)

whose components contain the vector v.

got h is an OPTIONAL scalar INTENT(IN) argument of type default LOGICAL. If the Hessian has already been evaluated

at the current x got h will be PRESENT and set .TRUE.; if this is the first time the Hessian is to be accessed at x,

either got h will be absent or PRESENT and set .FALSE.. This gives the user the opportunity to reuse “start-up”

computations required for the first instance of x to speed up subsequent products.

2.5.5 Hessian-sparse-vector products via internal evaluation

If the argument eval SHPROD is present when calling GALAHAD DGO solve, the user is expected to provide a subroutine

of that name to evaluate the product u = ∇xx f (x)v involving the Hessian of the objective function ∇xx f (x) and a given

sparse vector v, and to return the nonzero components of the result u. This routine is not required if the user has set

control%hessian available to .TRUE. and has made the values of ∇xx f (x) available either by calls to eval H (see

§2.5.3) or by reverse communication (see §2.6). If needed, the routine must be specified as

SUBROUTINE eval_SHPROD(status, X, userdata, nnz_v, INDEX_nz_v, V, &
nnz_u, INDEX_nz_u, U, got_h)

whose arguments are as follows:

status is a scalar INTENT(OUT) argument of type default INTEGER, that should be set to 0 if the routine has been

able to evaluate the sum u+∇xx f (x)v and to a non-zero value if the evaluation has not been possible.

X is a rank-one INTENT(IN) array argument of type default REAL (double precision in GALAHAD DGO double)

whose components contain the vector x.

userdata is a scalar INTENT(INOUT) argument of type GALAHAD userdata type whose components may be used

to communicate user-supplied data to and from the subroutines eval F, eval G, eval H, eval HPROD and

eval PREC (see Section 2.3.7).

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

12 DGO (March 18, 2022) GALAHAD

GALAHAD DGO

nnz v is a scalar INTENT(IN) argument of type default INTEGER, that specifies the number of nonzeros in the input

sparse vector v.

INDEX nz v is a rank-one INTENT(IN) array argument of length at least nnz v and type default INTEGER whose first

nnz v components give the indices of the nonzero components of v.

V is a rank-one INTENT(IN) array argument of type default REAL (double precision in GALAHAD DGO double)

whose components INDEX nz v(i), i = 1, . . . , nnz v, hold the nonzero values of v. Any other components

should be ignored.

nnz u is a scalar INTENT(OUT) argument of type default INTEGER, that gives the number of nonzeros in the output

vector u.

INDEX nz u is a rank-one INTENT(OUT) array argument of length at least nnz u and type default INTEGER whose first

nnz u components give the indices of the nonzero components of the computed product u.

U is a rank-one INTENT(OUT) array argument of type default REAL (double precision in GALAHAD DGO double)

whose components INDEX nz u(i), i= 1, . . . , nnz u, hold the nonzero values of u. The remaining components

should be ignored.

got h is an OPTIONAL scalar INTENT(IN) argument of type default LOGICAL. If the Hessian has already been evaluated

at the current x got h will be PRESENT and set .TRUE.; if this is the first time the Hessian is to be accessed at x,

either got h will be absent or PRESENT and set .FALSE.. This gives the user the opportunity to reuse “start-up”

computations required for the first instance of x to speed up subsequent products.

2.5.6 Preconditioner-vector products via internal evaluation

If the argument eval PREC is present when calling GALAHAD DGO solve, the user is expected to provide a subroutine

of that name to evaluate the product u = P(x)v involving the user’s preconditioner P(x) with a given vector v. The

symmetric matrix P(x) should ideally be chosen so that the eigenvalues of P(x)(∇xx f (x))−1 are clustered. This

subroutine will only be required if control%norm = -3, and the user prefers a subroutine call to that provided by

reverse communication with inform%status = 6 (see §2.6). The routine must be specified as

SUBROUTINE eval_PREC(status, X, userdata, U, V)

whose arguments are as follows:

status is a scalar INTENT(OUT) argument of type default INTEGER, that should be set to 0 if the routine has been

able to evaluate the product P(x)v and to a non-zero value if the evaluation has not been possible.

X is a rank-one INTENT(IN) array argument of type default REAL (double precision in GALAHAD DGO double)

whose components contain the vector x.

userdata is a scalar INTENT(INOUT) argument of type GALAHAD userdata type whose components may be used

to communicate user-supplied data to and from the subroutines eval F, eval G, eval H and eval PREC (see

Section 2.3.7).

U is a rank-one INTENT(OUT) array argument of type default REAL (double precision in GALAHAD DGO double)

whose components on output should contain the product sum u = P(x)v.

V is a rank-one INTENT(IN) array argument of type default REAL (double precision in GALAHAD DGO double)

whose components contain the vector v.

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD DGO (March 18, 2022) 13

DGO GALAHAD

2.6 Reverse Communication Information

A positive value of inform%status on exit from DGO solve indicates that GALAHAD DGO solve is seeking further

information—this will happen if the user has chosen not to evaluate function or derivative values internally (see Sec-

tion 2.5). The user should compute the required information and re-enter GALAHAD DGO solve with inform%status

and all other arguments (except those specifically mentioned below) unchanged.

Possible values of inform%status and the information required are

2. The user should compute the objective function value f (x) at the point x indicated in nlp%X. The required value

should be set in nlp%f, and data%eval status should be set to 0. If the user is unable to evaluate f (x)—for

instance, if the function is undefined at x—the user need not set nlp%f, but should then set data%eval status

to a non-zero value.

3. The user should compute the gradient of the objective function ∇x f (x) at the point x indicated in nlp%X. The

value of the i-th component of the gradient should be set in nlp%G(i), for i = 1, . . . ,n and data%eval status

should be set to 0. If the user is unable to evaluate a component of ∇x f (x)—for instance, if a component of the

gradient is undefined at x—the user need not set nlp%G, but should then set data%eval status to a non-zero

value.

4. The user should compute the Hessian of the objective function ∇xx f (x) at the point x indicated in nlp%X.

The value l-th component of the Hessian stored according to the scheme input in the remainder of nlp%H (see

Section 2.3.2) should be set in nlp%H%val(l), for l = 1, . . . , nlp%H%ne and data%eval status should be set

to 0. If the user is unable to evaluate a component of ∇xx f (x)—for instance, if a component of the Hessian is

undefined at x—the user need not set nlp%H%val, but should then set data%eval status to a non-zero value.

5. The user should compute the product ∇xx f (x)v of the Hessian of the objective function ∇xx f (x) at the point x

indicated in nlp%X with the vector v and add the result to the vector u. The vectors u and v are given in data%U

and data%V respectively, the resulting vector u+∇xx f (x)v should be set in data%U and data%eval status

should be set to 0. If the user is unable to evaluate the product—for instance, if a component of the Hessian is

undefined at x—the user need not set nlp%H%val, but should then set data%eval status to a non-zero value.

6. The user should compute the product u = P(x)v of their preconditioner P(x) at the point x indicated in nlp%X

with the vector v. The vectors v is given in data%V, the resulting vector u = P(x)v should be set in data%U and

data%eval status should be set to 0. If the user is unable to evaluate the product—for instance, if a component

of the preconditioner is undefined at x—the user need not set data%U, but should then set data%eval status

to a non-zero value.

This value can only occur if the user has set control%norm = -3, and has not provided an optional subroutine

eval PREC (see §2.5.6) to compute the required product with the preconditioner.

7. The user should compute the product h = ∇xx f (x)p of the Hessian of the objective function ∇xx f (x) at the point

x indicated in nlp%X with the sparse vector p. The nonzeros of p are stored in data%P(data%INDEX nz p(data

%nnz p l:data%nnz p u)) while the nonzeros of h should be returned in data%HP(data%INDEX nz hp(1

:data%nnz hp)); the user must set data%nnz hp and data%INDEX nz hp accordingly, and data%eval status

should be set to 0. If the user is unable to evaluate the product—for instance, if a component of the Hessian

is undefined at x—the user need not set data%HP, data%INDEX nz hp and data%nnz hp but should then set

data%eval status to a non-zero value.

This value will not occur if the user has set control%hessian available to .TRUE. and can provide values of

∇xx f (x) either by calls to eval H (see §2.5.3) or by reverse communication (see inform%status = 4, above).

23. The user should follow the instructions for 2 and 3 above before returning.

25. The user should follow the instructions for 2 and 5 above before returning.

35. The user should follow the instructions for 3 and 5 above before returning.

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

14 DGO (March 18, 2022) GALAHAD

GALAHAD DGO

235. The user should follow the instructions for 2, 3 and 5 above before returning.

2.7 Warning and error messages

A negative value of inform%status on exit from DGO solve or DGO terminate indicates that an error has occurred.

No further calls should be made until the error has been corrected. Possible values are:

-1. An allocation error occurred. A message indicating the offending array is written on unit control%error, and the

returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc, respectively.

-2. A deallocation error occurred. A message indicating the offending array is written on unit control%error and

the returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc, respectively.

-3. The restriction nlp%n > 0 or requirement that nlp%H type contains its relevant string ’DENSE’, ’COORDINATE’,

’SPARSE BY ROWS’ or ’DIAGONAL’ has been violated.

-4. The bound constraints are inconsistent or infinite.

-7. The objective function appears to be unbounded from below on the feasible set.

-9. The analysis phase of the factorization failed; the return status from the factorization package is given in the

component inform%factor status.

-10. The factorization failed; the return status from the factorization package is given in the component inform%fac-

tor status.

-11. The solution of a set of linear equations using factors from the factorization package failed; the return status

from the factorization package is given in the component inform%factor status.

-16. The problem is so ill-conditioned that further progress is impossible.

-17. The step is too small to make further impact.

-18. Too many iterations have been performed. This may happen if control%trb control%maxit is too small, but

may also be symptomatic of a badly scaled problem.

-19. The elapsed CPU or system clock time limit has been reached. This may happen if either control%cpu time limit

or control%clock time limit is too small, but may also be symptomatic of a badly scaled problem.

-82. The user has forced termination of GALAHAD DGO solve by removing the file named control%alive file

from unit control%alive unit.

-90. The Hessian storage type in nlp%H type is not one of ’DENSE’, ’COORDINATE’, ’SPARSE BY ROWS’ or ’DIAGONAL’.

-91. The hash table used to store the dictionary of vertices of the sub-boxes is full, and there is no room to increase

it further.

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD DGO (March 18, 2022) 15

DGO GALAHAD

2.8 Further features

In this section, we describe an alternative means of setting control parameters, that is components of the variable

control of type DGO control type (see Section 2.3.3), by reading an appropriate data specification file using the

subroutine DGO read specfile. This facility is useful as it allows a user to change DGO control parameters without

editing and recompiling programs that call DGO.

A specification file, or specfile, is a data file containing a number of ”specification commands”. Each command

occurs on a separate line, and comprises a ”keyword”, which is a string (in a close-to-natural language) used to identify

a control parameter, and an (optional) ”value”, which defines the value to be assigned to the given control parameter.

All keywords and values are case insensitive, keywords may be preceded by one or more blanks but values must not

contain blanks, and each value must be separated from its keyword by at least one blank. Values must not contain more

than 30 characters, and each line of the specfile is limited to 80 characters, including the blanks separating keyword

and value.

The portion of the specification file used by DGO read specfile must start with a ”BEGIN DGO” command and

end with an ”END” command. The syntax of the specfile is thus defined as follows:

(.. lines ignored by DGO_read_specfile ..)

BEGIN DGO

keyword value

.......

keyword value

END

(.. lines ignored by DGO_read_specfile ..)

where keyword and value are two strings separated by (at least) one blank. The “BEGIN DGO” and “END” delimiter

command lines may contain additional (trailing) strings so long as such strings are separated by one or more blanks,

so that lines such as

BEGIN DGO SPECIFICATION

and

END DGO SPECIFICATION

are acceptable. Furthermore, between the “BEGIN DGO” and “END” delimiters, specification commands may occur in

any order. Blank lines and lines whose first non-blank character is ! or * are ignored. The content of a line after a !

or * character is also ignored (as is the ! or * character itself). This provides an easy manner to ”comment out” some

specification commands, or to comment specific values of certain control parameters.

The value of a control parameters may be of three different types, namely integer, logical or real. Integer and real

values may be expressed in any relevant Fortran integer and floating-point formats (respectively). Permitted values for

logical parameters are ”ON”, ”TRUE”, ”.TRUE.”, ”T”, ”YES”, ”Y”, or ”OFF”, ”NO”, ”N”, ”FALSE”, ”.FALSE.” and ”F”.

Empty values are also allowed for logical control parameters, and are interpreted as ”TRUE”.

The specification file must be open for input when DGO read specfile is called, and the associated device number

passed to the routine in device (see below). Note that the corresponding file is REWINDed, which makes it possible

to combine the specifications for more than one program/routine. For the same reason, the file is not closed by

DGO read specfile.

2.8.1 To read control parameters from a specification file

Control parameters may be read from a file as follows:

CALL DGO_read_specfile(control, device)

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

16 DGO (March 18, 2022) GALAHAD

GALAHAD DGO

control is a scalar INTENT(INOUT)argument of type DGO control type (see Section 2.3.3). Default values should

have already been set, perhaps by calling DGO initialize. On exit, individual components of control may

have been changed according to the commands found in the specfile. Specfile commands and the component

(see Section 2.3.3) of control that each affects are given in Table 2.1.

command component of control value type

error-printout-device %error integer

printout-device %out integer

print-level %print level integer

start-print %start print integer

stop-print %stop print integer

iterations-between-printing %print gap integer

maximum-number-of-iterations %maxit integer

maximum-number-of-evaluations tt %max evals integer

initial-dictionary-size tt %dictionary size integer

alive-device %alive unit integer

infinity-value %infinity real

lipschitz-lower-bound %lipschitz lower bound real

lipschitz-reliability-parameter %lipschitz reliability real

lipschitz-control-parameter %lipschitz control real

maximum-box-length-required %stop length real

maximum-objective-gap-required %stop f real

minimum-objective-before-unbounded %obj unbounded real

maximum-cpu-time-limit %cpu time limit real

maximum-clock-time-limit %clock time limit real

hessian-available %hessian available logical

prune-boxes %prune logical

perform-local-optimization %perform local optimization logical

space-critical %space critical logical

deallocate-error-fatal %deallocate error fatal logical

alive-filename %alive file character

Table 2.1: Specfile commands and associated components of control.

device is a scalar INTENT(IN)argument of type default INTEGER, that must be set to the unit number on which the

specfile has been opened. If device is not open, control will not be altered and execution will continue, but

an error message will be printed on unit control%error.

2.9 Information printed

If control%print level is positive, information about the progress of the algorithm will be printed on unit control-

%out. If control%print level = 1, a single line of output will be produced every time the objective function

improves. This will include the number of attempts to improve the objective so far, the values of the objective function

and the norm of its gradient, and the number of function and gradient evaluations.

If control%print level ≥ 2 this output will be increased to provide significant detail of each iteration. Further

details concerning the attempted solution of the models may be obtained by increasing control%TRB control%print level,

and control%UGO control%print level.

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD DGO (March 18, 2022) 17

DGO GALAHAD

3 GENERAL INFORMATION

Use of common: None.

Workspace: Provided automatically by the module.

Other routines called directly: None.

Other modules used directly: DGO solve calls the GALAHAD packages GALAHAD CLOCK, GALAHAD SYMBOLS,

GALAHAD HASH, GALAHAD NLPT, GALAHAD USERDATA, GALAHAD SPECFILE, GALAHAD SPACE, GALAHAD NORMS,

GALAHAD UGO and GALAHAD TRB.

Input/output: Output is under control of the arguments control%error, control%out and control%print level.

Restrictions: nlp%n > 0 and nlp%H type ∈ {’DENSE’, ’COORDINATE’, ’SPARSE BY ROWS’, ’DIAGONAL’ }.

Portability: ISO Fortran 95 + TR 15581 or Fortran 2003. The package is thread-safe.

4 METHOD

Starting with the initial box xl ≤ x ≤ xu, a sequence of boxes is generated by considering the current set, and parti-

tioning a promising candidate into three equally-sized sub-boxes by splitting along one of the box dimensions. Each

partition requires only a pair of new function and derivative evaluations, and these values, together with estimates of

Lipschitz constants, makes it possible to remove other boxes from further consideration as soon as they cannot contain

a global minimizer. Efficient control of the dictionary of vertices of the sub-boxes is handled using a suitable hashing

procedure provided by GALAHAD HASH; each sub-box is indexed by the concatenated coordinates of a pair of opposite

vertices. At various stages, local minimization in a promising sub-box, using GALAHAD TRB, may be used to improve

the best-known upper bound on the global minimizer. If n = 1, the specialised univariate global minimization package

GALAHAD UGO is called directly.

We reiterate that although there are theoretical guarantees, these may require a large number of evaluations as the

dimension and nonconvexity increase. Thus the method should best be viewed as a heuristic to try to find a reasonable

approximation of the global minimum.

References:

The global minimization method employed is an extension of that due to

Ya. D. Sergeyev and D. E. Kasov (2015), “A deterministic global optimization using smooth diagonal auxiliary

functions”, Communications in Nonlinear Science and Numerical Simulation, Vol 21, Nos 1-3, pp. 99-111.

but adapted to use 2nd derivatives, while in the special case when n = 1, a simplification based on the ideas in

D. Lera and Ya. D. Sergeyev (2013), “Acceleration of univariate global optimization algorithms working with Lips-

chitz functions and Lipschitz first derivatives” SIAM J. Optimization Vol. 23, No. 1, pp. 508–529

is used instead. The generic bound-constrained trust-region method used for local minimization is described in detail

in

A. R. Conn, N. I. M. Gould and Ph. L. Toint (2000), Trust-region methods. SIAM/MPS Series on Optimization.

5 EXAMPLES OF USE

Suppose we wish to minimize the parametric objective function f (x) = (4+ p ∗ x2
1+

1
3
x4

1)x12 + x1x2 +(4x2
2 − 4) ∗ x2

2

when the parameter p takes the values -2.1, and the components of x are required to satisfy the bounds −3 ≤ x1 ≤ 3

and −2 ≤ x2 ≤ 2. We may use the following code:

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

18 DGO (March 18, 2022) GALAHAD

GALAHAD DGO

PROGRAM GALAHAD_DGO_EXAMPLE ! GALAHAD 4.0 - 2022-03-07 AT 13:50 GMT

USE GALAHAD_DGO_double ! double precision version

IMPLICIT NONE

INTEGER, PARAMETER :: wp = KIND(1.0D+0) ! set precision

TYPE (NLPT_problem_type):: nlp

TYPE (DGO_control_type) :: control

TYPE (DGO_inform_type) :: inform

TYPE (DGO_data_type) :: data

TYPE (GALAHAD_userdata_type) :: userdata

EXTERNAL :: FUN, GRAD, HESS, HPROD

INTEGER :: s

INTEGER, PARAMETER :: n = 2, h_ne = 3

REAL (KIND = wp), PARAMETER :: p = - 2.1_wp

! start problem data

nlp%pname = ’CAMEL6’ ! name

nlp%n = n ; nlp%H%ne = h_ne ! dimensions

ALLOCATE(nlp%X(n), nlp%G(n), nlp%X_l(n), nlp%X_u(n))

nlp%X_l(: n) = (/ - 3.0_wp, - 2.0_wp /)

nlp%X_u(: n) = (/ 3.0_wp, 2.0_wp /)

! sparse co-ordinate storage format

CALL SMT_put(nlp%H%type, ’COORDINATE’, s) ! Specify co-ordinate storage

ALLOCATE(nlp%H%val(h_ne), nlp%H%row(h_ne), nlp%H%col(h_ne))

nlp%H%row = (/ 1, 2, 2 /) ! Hessian H

nlp%H%col = (/ 1, 1, 2 /) ! NB lower triangle

! problem data complete

ALLOCATE(userdata%real(1)) ! Allocate space for parameter

userdata%real(1) = p ! Record parameter, p

CALL DGO_initialize(data, control, inform) ! Initialize control parameters

control%maxit = 2000

! Solve the problem

inform%status = 1 ! set for initial entry

CALL DGO_solve(nlp, control, inform, data, userdata, eval_F = FUN, &

eval_G = GRAD, eval_H = HESS, eval_HPROD = HPROD)

IF (inform%status == 0) THEN ! Successful return

WRITE(6, "(’ DGO: ’, I0, ’ evaluations -’, /, &

& ’ Best objective value found =’, ES12.4, /, &

& ’ Corresponding solution = ’, (5ES12.4))") &

inform%iter, inform%obj, nlp%X

ELSE ! Error returns

WRITE(6, "(’ DGO_solve exit status = ’, I6) ") inform%status

END IF

CALL DGO_terminate(data, control, inform) ! delete internal workspace

DEALLOCATE(nlp%X, nlp%G, nlp%H%val, nlp%H%row, nlp%H%col, userdata%real)

END PROGRAM GALAHAD_DGO_EXAMPLE

SUBROUTINE FUN(status, X, userdata, f) ! Objective function

USE GALAHAD_USERDATA_double, ONLY: GALAHAD_userdata_type

INTEGER, PARAMETER :: wp = KIND(1.0D+0)

INTEGER, INTENT(OUT) :: status

REAL (KIND = wp), INTENT(OUT) :: f

REAL (KIND = wp), DIMENSION(:),INTENT(IN) :: X

TYPE (GALAHAD_userdata_type), INTENT(INOUT) :: userdata

REAL (KIND = wp) :: x1, x2, p

x1 = X(1) ; x2 = X(2) ; p = userdata%real(1)

f = (4.0_wp + p * x1 ** 2 + x1 ** 4 / 3.0_wp) * x1 ** 2 + x1 * x2 + &

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD DGO (March 18, 2022) 19

DGO GALAHAD

(- 4.0_wp + 4.0_wp * x2 ** 2) * x2 ** 2

status = 0

RETURN

END SUBROUTINE FUN

SUBROUTINE GRAD(status, X, userdata, G) ! gradient of the objective

USE GALAHAD_USERDATA_double, ONLY: GALAHAD_userdata_type

INTEGER, PARAMETER :: wp = KIND(1.0D+0)

INTEGER, INTENT(OUT) :: status

REAL (KIND = wp), DIMENSION(:), INTENT(IN) :: X

REAL (KIND = wp), DIMENSION(:), INTENT(OUT) :: G

TYPE (GALAHAD_userdata_type), INTENT(INOUT) :: userdata

REAL (KIND = wp) :: x1, x2, p

x1 = X(1) ; x2 = X(2) ; p = userdata%real(1)

G(1) = (8.0_wp + 4.0_wp * p * x1 ** 2 + 2.0_wp * x1 ** 4) * x1 + x2

G(2) = x1 + (- 8.0_wp + 16.0_wp * x2 ** 2) * x2

status = 0

RETURN

END SUBROUTINE GRAD

SUBROUTINE HESS(status, X, userdata, Hval) ! Hessian of the objective

USE GALAHAD_USERDATA_double, ONLY: GALAHAD_userdata_type

INTEGER, PARAMETER :: wp = KIND(1.0D+0)

INTEGER, INTENT(OUT) :: status

REAL (KIND = wp), DIMENSION(:), INTENT(IN) :: X

REAL (KIND = wp), DIMENSION(:), INTENT(OUT) :: Hval

TYPE (GALAHAD_userdata_type), INTENT(INOUT) :: userdata

REAL (KIND = wp) :: x1, x2, p

x1 = X(1) ; x2 = X(2) ; p = userdata%real(1)

Hval(1) = 8.0_wp + 12.0_wp * p * x1 ** 2 + 10.0_wp * x1 ** 4

Hval(2) = 1.0_wp

Hval(3) = - 8.0_wp + 48.0_wp * x2 * x2

status = 0

RETURN

END SUBROUTINE HESS

SUBROUTINE HPROD(status, X, userdata, U, V, got_h) ! Hessian-vector product

USE GALAHAD_USERDATA_double, ONLY: GALAHAD_userdata_type

INTEGER, PARAMETER :: wp = KIND(1.0D+0)

INTEGER, INTENT(OUT) :: status

REAL (KIND = wp), DIMENSION(:), INTENT(IN) :: X

REAL (KIND = wp), DIMENSION(:), INTENT(INOUT) :: U

REAL (KIND = wp), DIMENSION(:), INTENT(IN) :: V

TYPE (GALAHAD_userdata_type), INTENT(INOUT) :: userdata

LOGICAL, OPTIONAL, INTENT(IN) :: got_h

REAL (KIND = wp) :: x1, x2, p

x1 = X(1) ; x2 = X(2) ; p = userdata%real(1)

U(1) = U(1) + (8.0_wp + 12.0_wp * p * x1 ** 2 + 10.0_wp * x1 ** 4) &

* V(1) + V(2)

U(2) = U(2) + V(1) + (- 8.0_wp + 48.0_wp * x2 * x2) * V(2)

status = 0

RETURN

END SUBROUTINE HPROD

Notice how the parameter p is passed to the function evaluation routines via the real component of the derived type
userdata. The code produces the following output:

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

20 DGO (March 18, 2022) GALAHAD

GALAHAD DGO

DGO: 201 evaluations -

Best objective value found = -1.0316E+00

Corresponding solution = 8.9842E-02 -7.1266E-01

If the user prefers to provide function, gradient and Hessian information without calls to specified routines, the fol-
lowing code is appropriate.

PROGRAM GALAHAD_DGO_EXAMPLE2 ! GALAHAD 4.0 - 2022-03-12 AT 11:10 GMT

USE GALAHAD_DGO_double ! double precision version

IMPLICIT NONE

INTEGER, PARAMETER :: wp = KIND(1.0D+0) ! set precision

TYPE (NLPT_problem_type):: nlp

TYPE (DGO_control_type) :: control

TYPE (DGO_inform_type) :: inform

TYPE (DGO_data_type) :: data

TYPE (GALAHAD_userdata_type) :: userdata

INTEGER :: s

INTEGER, PARAMETER :: n = 2, h_ne = 3

REAL (KIND = wp) :: x1, x2

REAL (KIND = wp), PARAMETER :: p = - 2.1_wp

! start problem data

nlp%pname = ’CAMEL6’ ! name

nlp%n = n ; nlp%H%ne = h_ne ! dimensions

ALLOCATE(nlp%X(n), nlp%G(n), nlp%X_l(n), nlp%X_u(n))

nlp%X_l(: n) = (/ - 3.0_wp, - 2.0_wp /)

nlp%X_u(: n) = (/ 3.0_wp, 2.0_wp /)

! sparse co-ordinate storage format

CALL SMT_put(nlp%H%type, ’COORDINATE’, s) ! Specify co-ordinate storage

ALLOCATE(nlp%H%val(h_ne), nlp%H%row(h_ne), nlp%H%col(h_ne))

nlp%H%row = (/ 1, 2, 2 /) ! Hessian H

nlp%H%col = (/ 1, 1, 2 /) ! NB lower triangle

! problem data complete

CALL DGO_initialize(data, control, inform) ! Initialize control parameters

! Solve the problem

inform%status = 1 ! set for initial entry

DO ! Solve problem using reverse communication

CALL DGO_solve(nlp, control, inform, data, userdata)

IF (inform%status == 0) THEN ! Successful return

WRITE(6, "(’ DGO: ’, I0, ’ evaluations -’, /, &

& ’ Best objective value found =’, ES12.4, /, &

& ’ Corresponding solution = ’, (5ES12.4))") &

inform%iter, inform%obj, nlp%X

EXIT

ELSE IF (inform%status < 0) THEN ! Error returns

WRITE(6, "(’ DGO_solve exit status = ’, I6) ") inform%status

EXIT

END IF

x1 = nlp%X(1) ; x2 = nlp%X(2)

IF (inform%status == 2 .OR. inform%status == 23 .OR. &

inform%status == 25 .OR. inform%status == 235) THEN ! evaluate f

nlp%f = (4.0_wp + p * x1 ** 2 + x1 ** 4 / 3.0_wp) * x1 ** 2 &

+ x1 * x2 + (- 4.0_wp + 4.0_wp * x2 ** 2) * x2 ** 2

END IF

IF (inform%status == 3 .OR. inform%status == 23 .OR. &

inform%status == 35 .OR. inform%status == 235) THEN ! evaluate g

nlp%G(1) = (8.0_wp + 4.0_wp * p * x1 ** 2 + 2.0_wp * x1 ** 4) * x1 &

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD DGO (March 18, 2022) 21

DGO GALAHAD

+ x2

nlp%G(2) = x1 + (- 8.0_wp + 16.0_wp * x2 ** 2) * x2

END IF

IF (inform%status == 4) THEN ! evaluate H

nlp%H%val(1) = 8.0_wp + 12.0_wp * p * x1 ** 2 + 10.0_wp * x1 ** 4

nlp%H%val(2) = 1.0_wp

nlp%H%val(3) = - 8.0_wp + 48.0_wp * x2 * x2

END IF

IF (inform%status == 5 .OR. inform%status == 25 .OR. &

inform%status == 35 .OR. inform%status == 235) THEN ! evaluate u = Hv

data%U(1) = data%U(1) + (8.0_wp + 12.0_wp * p * x1 ** 2 &

+ 10.0_wp * x1 ** 4) * data%V(1) + data%V(2)

data%U(2) = data%U(2) + data%V(1) &

+ (- 8.0_wp + 48.0_wp * x2 * x2) * data%V(2)

END IF

data%eval_status = 0

END DO

CALL DGO_terminate(data, control, inform) ! delete internal workspace

DEALLOCATE(nlp%X, nlp%G, nlp%H%val, nlp%H%row, nlp%H%col)

END PROGRAM GALAHAD_DGO_EXAMPLE2

This produces the same output.

All use is subject to the conditions of the GNU Lesser General Public License version 3.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

22 DGO (March 18, 2022) GALAHAD

