
C interfaces to GALAHAD CQP

Jari Fowkes and Nick Gould

STFC Rutherford Appleton Laboratory

Sat Mar 26 2022





i

1 GALAHAD C package cqp 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Authors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.3 Originally released . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.4 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.5 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.6 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.7 Call order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.8 Unsymmetric matrix storage formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.8.1 Dense storage format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.8.2 Sparse co-ordinate storage format . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.8.3 Sparse row-wise storage format . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.9 Symmetric matrix storage formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.9.1 Dense storage format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.9.2 Sparse co-ordinate storage format . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.9.3 Sparse row-wise storage format . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.9.4 Diagonal storage format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.9.5 Multiples of the identity storage format . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.9.6 The identity matrix format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.9.7 The zero matrix format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 File Index 5

2.1 File List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 File Documentation 7

3.1 galahad_cqp.h File Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1.1 Data Structure Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1.1.1 struct cqp_control_type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1.1.2 struct cqp_time_type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1.3 struct cqp_inform_type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.2 Function Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.2.1 cqp_initialize() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.2.2 cqp_read_specfile() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.2.3 cqp_import() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.2.4 cqp_reset_control() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.2.5 cqp_solve_qp() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.2.6 cqp_solve_sldqp() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.2.7 cqp_information() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.2.8 cqp_terminate() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Example Documentation 23

4.1 cqpt.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

C interfaces to GALAHAD CQP GALAHAD 4.0



ii

4.2 cqptf.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Index 29

GALAHAD 4.0 C interfaces to GALAHAD CQP



Chapter 1

GALAHAD C package cqp

1.1 Introduction

1.1.1 Purpose

This package uses a primal-dual interior-point method to solve the convex quadratic programming problem

minimize q(x) =
1

2
xTHx+ gTx+ f

or the shifted least-distance problem

minimize
1

2

n∑
j=1

w2
j (xj − x0j )2 + gTx+ f

subject to the general linear constraints

cli ≤ aTi x ≤ cui , i = 1, . . . ,m,

and the simple bound constraints
xlj ≤ xj ≤ xuj , j = 1, . . . , n,

where the n by n symmetric, positive-semi-definite matrix H , the vectors g, w, x0, ai, cl, cu, xl, xu and the scalar
f are given. Any of the constraint bounds cli, c

u
i , xlj and xuj may be infinite. Full advantage is taken of any zero

coefficients in the matrix H or the matrix A of vectors ai.

1.1.2 Authors

N. I. M. Gould and D. P. Robinson, STFC-Rutherford Appleton Laboratory, England.

C interface, additionally J. Fowkes, STFC-Rutherford Appleton Laboratory.

1.1.3 Originally released

November 2010, C interface September 2021.



2 GALAHAD C package cqp

1.1.4 Terminology

1.1.5 Method

Primal-dual interior point methods iterate towards a point that satisfies these conditions by ultimately aiming to sat-
isfy (1a), (2a) and (3), while ensuring that (1b) and (2b) are satisfied as strict inequalities at each stage. Appropriate
norms of the amounts by which (1a), (2a) and (3) fail to be satisfied are known as the primal and dual infeasibil-
ity, and the violation of complementary slackness, respectively. The fact that (1b) and (2b) are satisfied as strict
inequalities gives such methods their other title, namely interior-point methods.

The method aims at each stage to reduce the overall violation of (1a), (2a) and (3), rather than reducing each of the
terms individually. Given an estimate v = (x, c, y, yl, yu, z, zl, zu) of the primal-dual variables, a correction ∆v =
∆(x, c, y, yl, yuz, zl, zu) is obtained by solving a suitable linear system of Newton equations for the nonlinear
systems (1a), (2a) and a parameterized `‘residual trajectory’' perturbation of (3); residual trajectories proposed by
Zhang (1994) and Zhao and Sun (1999) are possibilities. An improved estimate v + α∆v is then used, where the
step-size α is chosen as close to 1.0 as possible while ensuring both that (1b) and (2b) continue to hold and that the
individual components which make up the complementary slackness (3) do not deviate too significantly from their
average value. The parameter that controls the perturbation of (3) is ultimately driven to zero.

The Newton equations are solved by applying the GALAHAD matrix factorization package SBLS, but there are op-
tions to factorize the matrix as a whole (the so-called "augmented system" approach), to perform a block elimination
first (the "Schur-complement" approach), or to let the method itself decide which of the two previous options is more
appropriate. The "Schur-complement" approach is usually to be preferred when all the weights are nonzero or when
every variable is bounded (at least one side), but may be inefficient if any of the columns of A is too dense.

Optionally, the problem may be pre-processed temporarily to eliminate dependent constraints using the GALAHAD
package FDC. This may improve the performance of the subsequent iteration.

1.1.6 Reference

The basic algorithm is a generalisation of those of

Y. Zhang (1994), On the convergence of a class of infeasible interior-point methods for the horizontal linear comple-
mentarity problem, SIAM J. Optimization 4(1) 208-227,

and

G. Zhao and J. Sun (1999). On the rate of local convergence of high-order infeasible path-following algorithms for
the P∗ linear complementarity problems, Computational Optimization and Applications 14(1) 293-307,

with many enhancements described by

N. I. M. Gould, D. Orban and D. P. Robinson (2013). Trajectory-following methods for large-scale degenerate convex
quadratic programming, Mathematical Programming Computation 5(2) 113-142.

GALAHAD 4.0 C interfaces to GALAHAD CQP



1.1 Introduction 3

1.1.7 Call order

To solve a given problem, functions from the cqp package must be called in the following order:

• cqp_initialize - provide default control parameters and set up initial data structures

• cqp_read_specfile (optional) - override control values by reading replacement values from a file

• cqp_import - set up problem data structures and fixed values

• cqp_reset_control (optional) - possibly change control parameters if a sequence of problems are being solved

• solve the problem by calling one of

– cqp_solve_qp - solve the quadratic program

– cqp_solve_sldqp - solve the shifted least-distance problem

• cqp_information (optional) - recover information about the solution and solution process

• cqp_terminate - deallocate data structures

See Section 4.1 for examples of use.

1.1.8 Unsymmetric matrix storage formats

The unsymmetric m by n constraint matrix A may be presented and stored in a variety of convenient input formats.

Both C-style (0 based) and fortran-style (1-based) indexing is allowed. Choose control.f_indexing as
false for C style and true for fortran style; the discussion below presumes C style, but add 1 to indices for the
corresponding fortran version.

Wrappers will automatically convert between 0-based (C) and 1-based (fortran) array indexing, so may be used
transparently from C. This conversion involves both time and memory overheads that may be avoided by supplying
data that is already stored using 1-based indexing.

1.1.8.1 Dense storage format

The matrix A is stored as a compact dense matrix by rows, that is, the values of the entries of each row in turn are
stored in order within an appropriate real one-dimensional array. In this case, component n ∗ i + j of the storage
array A_val will hold the value Aij for 0 ≤ i ≤ m− 1, 0 ≤ j ≤ n− 1.

1.1.8.2 Sparse co-ordinate storage format

Only the nonzero entries of the matrices are stored. For the l-th entry, 0 ≤ l ≤ ne− 1, of A, its row index i, column
index j and value Aij , 0 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 1, are stored as the l-th components of the integer arrays
A_row and A_col and real array A_val, respectively, while the number of nonzeros is recorded as A_ne = ne.

1.1.8.3 Sparse row-wise storage format

Again only the nonzero entries are stored, but this time they are ordered so that those in row i appear directly before
those in row i+1. For the i-th row of A the i-th component of the integer array A_ptr holds the position of the first
entry in this row, while A_ptr(m) holds the total number of entries plus one. The column indices j, 0 ≤ j ≤ n − 1,
and values Aij of the nonzero entries in the i-th row are stored in components l = A_ptr(i), . . ., A_ptr(i+1)-1,
0 ≤ i ≤ m − 1, of the integer array A_col, and real array A_val, respectively. For sparse matrices, this scheme
almost always requires less storage than its predecessor.

C interfaces to GALAHAD CQP GALAHAD 4.0



4 GALAHAD C package cqp

1.1.9 Symmetric matrix storage formats

Likewise, the symmetric n by n objective Hessian matrix H may be presented and stored in a variety of formats.
But crucially symmetry is exploited by only storing values from the lower triangular part (i.e, those entries that lie on
or below the leading diagonal).

1.1.9.1 Dense storage format

The matrix H is stored as a compact dense matrix by rows, that is, the values of the entries of each row in turn are
stored in order within an appropriate real one-dimensional array. Since H is symmetric, only the lower triangular
part (that is the part hij for 0 ≤ j ≤ i ≤ n − 1) need be held. In this case the lower triangle should be stored by
rows, that is component i ∗ i/2 + j of the storage array H_val will hold the value hij (and, by symmetry, hji) for
0 ≤ j ≤ i ≤ n− 1.

1.1.9.2 Sparse co-ordinate storage format

Only the nonzero entries of the matrices are stored. For the l-th entry, 0 ≤ l ≤ ne− 1, of H , its row index i, column
index j and value hij , 0 ≤ j ≤ i ≤ n − 1, are stored as the l-th components of the integer arrays H_row and
H_col and real array H_val, respectively, while the number of nonzeros is recorded as H_ne = ne. Note that only
the entries in the lower triangle should be stored.

1.1.9.3 Sparse row-wise storage format

Again only the nonzero entries are stored, but this time they are ordered so that those in row i appear directly before
those in row i+1. For the i-th row of H the i-th component of the integer array H_ptr holds the position of the first
entry in this row, while H_ptr(n) holds the total number of entries plus one. The column indices j, 0 ≤ j ≤ i, and
values hij of the entries in the i-th row are stored in components l = H_ptr(i), . . ., H_ptr(i+1)-1 of the integer array
H_col, and real array H_val, respectively. Note that as before only the entries in the lower triangle should be stored.
For sparse matrices, this scheme almost always requires less storage than its predecessor.

1.1.9.4 Diagonal storage format

If H is diagonal (i.e., Hij = 0 for all 0 ≤ i 6= j ≤ n − 1) only the diagonals entries Hii, 0 ≤ i ≤ n − 1 need be
stored, and the first n components of the array H_val may be used for the purpose.

1.1.9.5 Multiples of the identity storage format

If H is a multiple of the identity matrix, (i.e., H = αI where I is the n by n identity matrix and α is a scalar), it
suffices to store α as the first component of H_val.

1.1.9.6 The identity matrix format

If H is the identity matrix, no values need be stored.

1.1.9.7 The zero matrix format

The same is true if H is the zero matrix.

GALAHAD 4.0 C interfaces to GALAHAD CQP



Chapter 2

File Index

2.1 File List

Here is a list of all files with brief descriptions:

galahad_cqp.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7



6 File Index

GALAHAD 4.0 C interfaces to GALAHAD CQP



Chapter 3

File Documentation

3.1 galahad_cqp.h File Reference

#include <stdbool.h>
#include "galahad_precision.h"
#include "galahad_fdc.h"
#include "galahad_sbls.h"
#include "galahad_fit.h"
#include "galahad_roots.h"
#include "galahad_cro.h"
#include "galahad_rpd.h"

Data Structures

• struct cqp_control_type
• struct cqp_time_type
• struct cqp_inform_type

Functions

• void cqp_initialize (void ∗∗data, struct cqp_control_type ∗control, int ∗status)
• void cqp_read_specfile (struct cqp_control_type ∗control, const char specfile[ ])
• void cqp_import (struct cqp_control_type ∗control, void ∗∗data, int ∗status, int n, int m, const char H_type[ ],

int H_ne, const int H_row[ ], const int H_col[ ], const int H_ptr[ ], const char A_type[ ], int A_ne, const int
A_row[ ], const int A_col[ ], const int A_ptr[ ])

• void cqp_reset_control (struct cqp_control_type ∗control, void ∗∗data, int ∗status)
• void cqp_solve_qp (void ∗∗data, int ∗status, int n, int m, int h_ne, const real_wp_ H_val[ ], const real_wp_

g[ ], const real_wp_ f, int a_ne, const real_wp_ A_val[ ], const real_wp_ c_l[ ], const real_wp_ c_u[ ], const
real_wp_ x_l[ ], const real_wp_ x_u[ ], real_wp_ x[ ], real_wp_ c[ ], real_wp_ y[ ], real_wp_ z[ ], int x_stat[ ], int
c_stat[ ])

• void cqp_solve_sldqp (void ∗∗data, int ∗status, int n, int m, const real_wp_ w[ ], const real_wp_ x0[ ], const
real_wp_ g[ ], const real_wp_ f, int a_ne, const real_wp_ A_val[ ], const real_wp_ c_l[ ], const real_wp_ c_←↩

u[ ], const real_wp_ x_l[ ], const real_wp_ x_u[ ], real_wp_ x[ ], real_wp_ c[ ], real_wp_ y[ ], real_wp_ z[ ], int
x_stat[ ], int c_stat[ ])

• void cqp_information (void ∗∗data, struct cqp_inform_type ∗inform, int ∗status)
• void cqp_terminate (void ∗∗data, struct cqp_control_type ∗control, struct cqp_inform_type ∗inform)



8 File Documentation

3.1.1 Data Structure Documentation

3.1.1.1 struct cqp_control_type

control derived type as a C struct

Examples

cqpt.c, and cqptf.c.

Data Fields

bool f_indexing use C or Fortran sparse matrix indexing

int error error and warning diagnostics occur on stream
error

int out general output occurs on stream out

int print_level the level of output required is specified by
print_level

• ≤ 0 gives no output,

• = 1 gives a one-line summary for every
iteration,

• = 2 gives a summary of the inner iteration
for each iteration,

• ≥ 3 gives increasingly verbose
(debugging) output

int start_print any printing will start on this iteration

int stop_print any printing will stop on this iteration

int maxit at most maxit inner iterations are allowed
int infeas_max the number of iterations for which the overall

infeasibility of the problem is not reduced by at
least a factor .reduce_infeas before the problem
is flagged as infeasible (see reduce_infeas)

int muzero_fixed the initial value of the barrier parameter will not
be changed for the first muzero_fixed iterations

int restore_problem indicate whether and how much of the input
problem should be restored on output. Possible
values are

• 0 nothing restored

• 1 scalar and vector parameters

• 2 all parameters

GALAHAD 4.0 C interfaces to GALAHAD CQP



3.1 galahad_cqp.h File Reference 9

Data Fields

int indicator_type specifies the type of indicator function used.
Possible values are

• 1 primal indicator: a constraint is active if
and only if the distance to its nearest
bound ≤ .indicator_p_tol

• 2 primal-dual indicator: a constraint is
active if and only if the distance to its
nearest bound ≤ .indicator_tol_pd ∗ size
of corresponding multiplier

• 3 primal-dual indicator: a constraint is
active if and only if the distance to its
nearest bound ≤ .indicator_tol_tapia ∗
distance to same bound at previous
iteration

int arc which residual trajectory should be used to aim
from the current iterate to the solution. Possible
values are

• 1 the Zhang linear residual trajectory

• 2 the Zhao-Sun quadratic residual
trajectory

• 3 the Zhang arc ultimately switching to the
Zhao-Sun residual trajectory

• 4 the mixed linear-quadratic residual
trajectory

• 5 the Zhang arc ultimately switching to the
mixed linear-quadratic residual trajectory

int series_order the order of (Taylor/Puiseux) series to fit to the
path data

int sif_file_device specifies the unit number to write generated SIF
file describing the current problem

int qplib_file_device specifies the unit number to write generated
QPLIB file describing the current problem

real_wp_ infinity any bound larger than infinity in modulus will be
regarded as infinite

real_wp_ stop_abs_p the required absolute and relative accuracies for
the primal infeasibility

real_wp_ stop_rel_p see stop_abs_p

real_wp_ stop_abs_d the required absolute and relative accuracies for
the dual infeasibility

real_wp_ stop_rel_d see stop_abs_d

real_wp_ stop_abs_c the required absolute and relative accuracies for
the complementarity

real_wp_ stop_rel_c see stop_abs_c

real_wp_ perturb_h .perturb_h will be added to the Hessian

real_wp_ prfeas initial primal variables will not be closer than
.prfeas from their bounds

C interfaces to GALAHAD CQP GALAHAD 4.0



10 File Documentation

Data Fields

real_wp_ dufeas initial dual variables will not be closer than
.dufeas from their bounds

real_wp_ muzero the initial value of the barrier parameter. If
muzero is not positive, it will be reset to an
appropriate value

real_wp_ tau the weight attached to primal-dual infeasibility
compared to complementa when assessing step
acceptance

real_wp_ gamma_c individual complementarities will not be allowed
to be smaller than gamma_c times the average
value

real_wp_ gamma_f the average complementarity will not be allowed
to be smaller than gamma_f times the
primal/dual infeasibility

real_wp_ reduce_infeas if the overall infeasibility of the problem is not
reduced by at least a factor .reduce_infeas over
.infeas_max iterations, the problem is flagged as
infeasible (see infeas_max)

real_wp_ obj_unbounded if the objective function value is smaller than
obj_unbounded, it will be flagged as unbounded
from below.

real_wp_ potential_unbounded if W=0 and the potential function value is
smaller than .potential_unbounded ∗ number of
one-sided bounds, the analytic center will be
flagged as unbounded

real_wp_ identical_bounds_tol any pair of constraint bounds (cl, cu) or (xl, xu)
that are closer than .identical_bounds_tol will be
reset to the average of their values

real_wp_ mu_lunge start terminal extrapolation when mu reaches
mu_lunge

real_wp_ indicator_tol_p if .indicator_type = 1, a constraint/bound will be
deemed to be active if and only if the distance to
its nearest bound ≤ .indicator_p_tol

real_wp_ indicator_tol_pd if .indicator_type = 2, a constraint/bound will be
deemed to be active if and only if the distance to
its nearest bound ≤ .indicator_tol_pd ∗ size of
corresponding multiplier

real_wp_ indicator_tol_tapia if .indicator_type = 3, a constraint/bound will be
deemed to be active if and only if the distance to
its nearest bound ≤ .indicator_tol_tapia ∗
distance to same bound at previous iteration

real_wp_ cpu_time_limit the maximum CPU time allowed (-ve means
infinite)

real_wp_ clock_time_limit the maximum elapsed clock time allowed (-ve
means infinite)

bool remove_dependencies the equality constraints will be preprocessed to
remove any linear dependencies if true

bool treat_zero_bounds_as_general any problem bound with the value zero will be
treated as if it were a general value if true

bool treat_separable_as_general if .just_feasible is true, the algorithm will stop as
soon as a feasible point is found. Otherwise, the
optimal solution to the problem will be found

GALAHAD 4.0 C interfaces to GALAHAD CQP



3.1 galahad_cqp.h File Reference 11

Data Fields

bool just_feasible if .treat_separable_as_general, is true, any
separability in the problem structure will be
ignored

bool getdua if .getdua, is true, advanced initial values are
obtained for the dual variables

bool puiseux decide between Puiseux and Taylor series
approximations to the arc

bool every_order try every order of series up to series_order?

bool feasol if .feasol is true, the final solution obtained will
be perturbed so that variables close to their
bounds are moved onto these bounds

bool balance_initial_complentarity if .balance_initial_complentarity is true, the
initial complemetarity is required to be balanced

bool crossover if .crossover is true, cross over the solution to
one defined by linearly-independent constraints
if possible

bool space_critical if .space_critical true, every effort will be made
to use as little space as possible. This may
result in longer computation time

bool deallocate_error_fatal if .deallocate_error_fatal is true, any
array/pointer deallocation error will terminate
execution. Otherwise, computation will continue

bool generate_sif_file if .generate_sif_file is .true. if a SIF file
describing the current problem is to be
generated

bool generate_qplib_file if .generate_qplib_file is .true. if a QPLIB file
describing the current problem is to be
generated

char sif_file_name[31] name of generated SIF file containing input
problem

char qplib_file_name[31] name of generated QPLIB file containing input
problem

char prefix[31] all output lines will be prefixed by
.prefix(2:LEN(TRIM(.prefix))-1) where .prefix
contains the required string enclosed in quotes,
e.g. "string" or 'string'

struct fdc_control_type fdc_control control parameters for FDC

struct sbls_control_type sbls_control control parameters for SBLS

struct fit_control_type fit_control control parameters for FIT

struct roots_control_type roots_control control parameters for ROOTS

struct cro_control_type cro_control control parameters for CRO

3.1.1.2 struct cqp_time_type

time derived type as a C struct

Data Fields

real_wp_ total the total CPU time spent in the package

real_wp_ preprocess the CPU time spent preprocessing the problem

C interfaces to GALAHAD CQP GALAHAD 4.0



12 File Documentation

Data Fields

real_wp_ find_dependent the CPU time spent detecting linear dependencies

real_wp_ analyse the CPU time spent analysing the required matrices prior to factorization

real_wp_ factorize the CPU time spent factorizing the required matrices

real_wp_ solve the CPU time spent computing the search direction

real_wp_ clock_total the total clock time spent in the package

real_wp_ clock_preprocess the clock time spent preprocessing the problem

real_wp_ clock_find_dependent the clock time spent detecting linear dependencies

real_wp_ clock_analyse the clock time spent analysing the required matrices prior to factorization

real_wp_ clock_factorize the clock time spent factorizing the required matrices

real_wp_ clock_solve the clock time spent computing the search direction

3.1.1.3 struct cqp_inform_type

inform derived type as a C struct

Examples

cqpt.c, and cqptf.c.

Data Fields

int status return status. See CQP_solve for details
int alloc_status the status of the last attempted

allocation/deallocation
char bad_alloc[81] the name of the array for which an

allocation/deallocation error ocurred
int iter the total number of iterations required

int factorization_status the return status from the factorization
long int factorization_integer the total integer workspace required for the

factorization
long int factorization_real the total real workspace required for the

factorization
int nfacts the total number of factorizations performed

int nbacts the total number of "wasted" function evaluations
during the linesearch

int threads the number of threads used
real_wp_ obj the value of the objective function at the best

estimate of the solution determined by
CQP_solve

real_wp_ primal_infeasibility the value of the primal infeasibility

real_wp_ dual_infeasibility the value of the dual infeasibility

real_wp_ complementary_slackness the value of the complementary slackness

real_wp_ init_primal_infeasibility these values at the initial point (needed bg
GALAHAD_CCQP)

real_wp_ init_dual_infeasibility see init_primal_infeasibility

real_wp_ init_complementary_slackness see init_primal_infeasibility

real_wp_ potential the value of the logarithmic potential function
sum -log(distance to constraint boundary)

GALAHAD 4.0 C interfaces to GALAHAD CQP



3.1 galahad_cqp.h File Reference 13

Data Fields

real_wp_ non_negligible_pivot the smallest pivot which was not judged to be
zero when detecting linear dependent constraints

bool feasible is the returned "solution" feasible?
int checkpointsIter[16] checkpoints(i) records the iteration at which the

criticality measures first fall below 10−i, i = 1, ...,
16 (-1 means not achieved)

real_wp_ checkpointsTime[16] see checkpointsIter

struct cqp_time_type time timings (see above)

struct fdc_inform_type fdc_inform inform parameters for FDC

struct sbls_inform_type sbls_inform inform parameters for SBLS

struct fit_inform_type fit_inform return information from FIT

struct roots_inform_type roots_inform return information from ROOTS

struct cro_inform_type cro_inform inform parameters for CRO

struct rpd_inform_type rpd_inform inform parameters for RPD

3.1.2 Function Documentation

3.1.2.1 cqp_initialize()

void cqp_initialize (

void ∗∗ data,

struct cqp_control_type ∗ control,

int ∗ status )

Set default control values and initialize private data

Parameters

in,out data holds private internal data

out control is a struct containing control information (see cqp_control_type)

out status is a scalar variable of type int, that gives the exit status from the package. Possible
values are (currently):

• 0. The import was succesful.

Examples

cqpt.c, and cqptf.c.

3.1.2.2 cqp_read_specfile()

void cqp_read_specfile (

C interfaces to GALAHAD CQP GALAHAD 4.0



14 File Documentation

struct cqp_control_type ∗ control,

const char specfile[] )

Read the content of a specification file, and assign values associated with given keywords to the corresponding
control parameters. By default, the spcification file will be named RUNCQP.SPC and lie in the current directory.
Refer to Table 2.1 in the fortran documentation provided in $GALAHAD/doc/cqp.pdf for a list of keywords that may
be set.

Parameters

in,out control is a struct containing control information (see cqp_control_type)

in specfile is a character string containing the name of the specification file

3.1.2.3 cqp_import()

void cqp_import (

struct cqp_control_type ∗ control,

void ∗∗ data,

int ∗ status,

int n,

int m,

const char H_type[],

int H_ne,

const int H_row[],

const int H_col[],

const int H_ptr[],

const char A_type[],

int A_ne,

const int A_row[],

const int A_col[],

const int A_ptr[] )

Import problem data into internal storage prior to solution.

Parameters

in control is a struct whose members provide control paramters for the remaining prcedures (see
cqp_control_type)

in,out data holds private internal data

GALAHAD 4.0 C interfaces to GALAHAD CQP



3.1 galahad_cqp.h File Reference 15

Parameters

in,out status is a scalar variable of type int, that gives the exit status from the package. Possible
values are:

• 0. The import was succesful

• -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -3. The restrictions n > 0 or m > 0 or requirement that a type contains its
relevant string 'dense', 'coordinate', 'sparse_by_rows', 'diagonal',
'scaled_identity', 'identity', 'zero' or 'none' has been violated.

• -23. An entry from the strict upper triangle of H has been specified.

in n is a scalar variable of type int, that holds the number of variables.

in m is a scalar variable of type int, that holds the number of general linear constraints.

in H_type is a one-dimensional array of type char that specifies the symmetric storage scheme
used for the Hessian, H . It should be one of 'coordinate', 'sparse_by_rows', 'dense',
'diagonal', 'scaled_identity', 'identity', 'zero' or 'none', the latter pair if H = 0; lower or
upper case variants are allowed.

in H_ne is a scalar variable of type int, that holds the number of entries in the lower triangular
part of H in the sparse co-ordinate storage scheme. It need not be set for any of the
other schemes.

in H_row is a one-dimensional array of size H_ne and type int, that holds the row indices of the
lower triangular part of H in the sparse co-ordinate storage scheme. It need not be set
for any of the other three schemes, and in this case can be NULL.

in H_col is a one-dimensional array of size H_ne and type int, that holds the column indices of
the lower triangular part of H in either the sparse co-ordinate, or the sparse row-wise
storage scheme. It need not be set when the dense, diagonal or (scaled) identity
storage schemes are used, and in this case can be NULL.

in H_ptr is a one-dimensional array of size n+1 and type int, that holds the starting position of
each row of the lower triangular part of H , as well as the total number of entries plus
one, in the sparse row-wise storage scheme. It need not be set when the other
schemes are used, and in this case can be NULL.

in A_type is a one-dimensional array of type char that specifies the unsymmetric storage scheme
used for the constraint Jacobian, A. It should be one of 'coordinate', 'sparse_by_rows'
or 'dense; lower or upper case variants are allowed.

in A_ne is a scalar variable of type int, that holds the number of entries in A in the sparse
co-ordinate storage scheme. It need not be set for any of the other schemes.

in A_row is a one-dimensional array of size A_ne and type int, that holds the row indices of A in
the sparse co-ordinate storage scheme. It need not be set for any of the other
schemes, and in this case can be NULL.

in A_col is a one-dimensional array of size A_ne and type int, that holds the column indices of A
in either the sparse co-ordinate, or the sparse row-wise storage scheme. It need not be
set when the dense or diagonal storage schemes are used, and in this case can be
NULL.

C interfaces to GALAHAD CQP GALAHAD 4.0



16 File Documentation

Parameters

in A_ptr is a one-dimensional array of size n+1 and type int, that holds the starting position of
each row of A, as well as the total number of entries plus one, in the sparse row-wise
storage scheme. It need not be set when the other schemes are used, and in this case
can be NULL.

Examples

cqpt.c, and cqptf.c.

3.1.2.4 cqp_reset_control()

void cqp_reset_control (

struct cqp_control_type ∗ control,

void ∗∗ data,

int ∗ status )

Reset control parameters after import if required.

Parameters

in control is a struct whose members provide control paramters for the remaining prcedures (see
cqp_control_type)

in,out data holds private internal data

in,out status is a scalar variable of type int, that gives the exit status from the package. Possible
values are:

• 0. The import was succesful.

3.1.2.5 cqp_solve_qp()

void cqp_solve_qp (

void ∗∗ data,

int ∗ status,

int n,

int m,

int h_ne,

const real_wp_ H_val[],

const real_wp_ g[],

const real_wp_ f,

int a_ne,

const real_wp_ A_val[],

const real_wp_ c_l[],

const real_wp_ c_u[],

const real_wp_ x_l[],

GALAHAD 4.0 C interfaces to GALAHAD CQP



3.1 galahad_cqp.h File Reference 17

const real_wp_ x_u[],

real_wp_ x[],

real_wp_ c[],

real_wp_ y[],

real_wp_ z[],

int x_stat[],

int c_stat[] )

Solve the quadratic program when the Hessian H is available.

Parameters

in,out data holds private internal data

in,out status is a scalar variable of type int, that gives the entry and exit status from the package.
Possible exit are:

• 0. The run was succesful.

• -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -3. The restrictions n > 0 and m > 0 or requirement that a type contains its
relevant string 'dense', 'coordinate', 'sparse_by_rows', 'diagonal', 'scaled_identity',
'identity', 'zero' or 'none' has been violated.

• -5. The simple-bound constraints are inconsistent.

• -7. The constraints appear to have no feasible point.

• -9. The analysis phase of the factorization failed; the return status from the
factorization package is given in the component inform.factor_status

• -10. The factorization failed; the return status from the factorization package is
given in the component inform.factor_status.

• -11. The solution of a set of linear equations using factors from the factorization
package failed; the return status from the factorization package is given in the
component inform.factor_status.

• -16. The problem is so ill-conditioned that further progress is impossible.

• -17. The step is too small to make further impact.

• -18. Too many iterations have been performed. This may happen if control.maxit
is too small, but may also be symptomatic of a badly scaled problem.

• -19. The CPU time limit has been reached. This may happen if
control.cpu_time_limit is too small, but may also be symptomatic of a badly scaled
problem.

• -23. An entry from the strict upper triangle of H has been specified.

in n is a scalar variable of type int, that holds the number of variables

in m is a scalar variable of type int, that holds the number of general linear constraints.

in h_ne is a scalar variable of type int, that holds the number of entries in the lower triangular
part of the Hessian matrix H .

C interfaces to GALAHAD CQP GALAHAD 4.0



18 File Documentation

Parameters

in H_val is a one-dimensional array of size h_ne and type double, that holds the values of the
entries of the lower triangular part of the Hessian matrix H in any of the available
storage schemes.

in g is a one-dimensional array of size n and type double, that holds the linear term g of the
objective function. The j-th component of g, j = 0, ... , n-1, contains gj .

in f is a scalar of type double, that holds the constant term f of the objective function.

in a_ne is a scalar variable of type int, that holds the number of entries in the constraint Jacobian
matrix A.

in A_val is a one-dimensional array of size a_ne and type double, that holds the values of the
entries of the constraint Jacobian matrix A in any of the available storage schemes.

in c_l is a one-dimensional array of size m and type double, that holds the lower bounds cl on
the constraints Ax. The i-th component of c_l, i = 0, ... , m-1, contains cli.

in c_u is a one-dimensional array of size m and type double, that holds the upper bounds cl on
the constraints Ax. The i-th component of c_u, i = 0, ... , m-1, contains cui .

in x_l is a one-dimensional array of size n and type double, that holds the lower bounds xl on
the variables x. The j-th component of x_l, j = 0, ... , n-1, contains xlj .

in x_u is a one-dimensional array of size n and type double, that holds the upper bounds xl on
the variables x. The j-th component of x_u, j = 0, ... , n-1, contains xlj .

in,out x is a one-dimensional array of size n and type double, that holds the values x of the
optimization variables. The j-th component of x, j = 0, ... , n-1, contains xj .

out c is a one-dimensional array of size m and type double, that holds the residual c(x). The
i-th component of c, j = 0, ... , n-1, contains cj(x).

in,out y is a one-dimensional array of size n and type double, that holds the values y of the
Lagrange multipliers for the general linear constraints. The j-th component of y, j = 0, ... ,
n-1, contains yj .

in,out z is a one-dimensional array of size n and type double, that holds the values z of the dual
variables. The j-th component of z, j = 0, ... , n-1, contains zj .

out x_stat is a one-dimensional array of size n and type int, that gives the optimal status of the
problem variables. If x_stat(j) is negative, the variable xj most likely lies on its lower
bound, if it is positive, it lies on its upper bound, and if it is zero, it lies between its
bounds.

out c_stat is a one-dimensional array of size m and type int, that gives the optimal status of the
general linear constraints. If c_stat(i) is negative, the constraint value aTi x most likely
lies on its lower bound, if it is positive, it lies on its upper bound, and if it is zero, it lies
between its bounds.

Examples

cqpt.c, and cqptf.c.

3.1.2.6 cqp_solve_sldqp()

void cqp_solve_sldqp (

void ∗∗ data,

int ∗ status,

int n,

GALAHAD 4.0 C interfaces to GALAHAD CQP



3.1 galahad_cqp.h File Reference 19

int m,

const real_wp_ w[],

const real_wp_ x0[],

const real_wp_ g[],

const real_wp_ f,

int a_ne,

const real_wp_ A_val[],

const real_wp_ c_l[],

const real_wp_ c_u[],

const real_wp_ x_l[],

const real_wp_ x_u[],

real_wp_ x[],

real_wp_ c[],

real_wp_ y[],

real_wp_ z[],

int x_stat[],

int c_stat[] )

Solve the shifted least-distance quadratic program

Parameters

in,out data holds private internal data

C interfaces to GALAHAD CQP GALAHAD 4.0



20 File Documentation

Parameters

in,out status is a scalar variable of type int, that gives the entry and exit status from the package.
Possible exit are:

• 0. The run was succesful

• -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -3. The restrictions n > 0 and m > 0 or requirement that a type contains its
relevant string 'dense', 'coordinate', 'sparse_by_rows', 'diagonal', 'scaled_identity',
'identity', 'zero' or 'none' has been violated.

• -5. The simple-bound constraints are inconsistent.

• -7. The constraints appear to have no feasible point.

• -9. The analysis phase of the factorization failed; the return status from the
factorization package is given in the component inform.factor_status

• -10. The factorization failed; the return status from the factorization package is
given in the component inform.factor_status.

• -11. The solution of a set of linear equations using factors from the factorization
package failed; the return status from the factorization package is given in the
component inform.factor_status.

• -16. The problem is so ill-conditioned that further progress is impossible.

• -17. The step is too small to make further impact.

• -18. Too many iterations have been performed. This may happen if control.maxit
is too small, but may also be symptomatic of a badly scaled problem.

• -19. The CPU time limit has been reached. This may happen if
control.cpu_time_limit is too small, but may also be symptomatic of a badly scaled
problem.

in n is a scalar variable of type int, that holds the number of variables

in m is a scalar variable of type int, that holds the number of general linear constraints.

in w is a one-dimensional array of size n and type double, that holds the values of the weights
w.

in x0 is a one-dimensional array of size n and type double, that holds the values of the shifts
x0.

in g is a one-dimensional array of size n and type double, that holds the linear term g of the
objective function. The j-th component of g, j = 0, ... , n-1, contains gj .

in f is a scalar of type double, that holds the constant term f of the objective function.

in a_ne is a scalar variable of type int, that holds the number of entries in the constraint Jacobian
matrix A.

in A_val is a one-dimensional array of size a_ne and type double, that holds the values of the
entries of the constraint Jacobian matrix A in any of the available storage schemes.

in c_l is a one-dimensional array of size m and type double, that holds the lower bounds cl on
the constraints Ax. The i-th component of c_l, i = 0, ... , m-1, contains cli.

GALAHAD 4.0 C interfaces to GALAHAD CQP



3.1 galahad_cqp.h File Reference 21

Parameters

in c_u is a one-dimensional array of size m and type double, that holds the upper bounds cl on
the constraints Ax. The i-th component of c_u, i = 0, ... , m-1, contains cui .

in x_l is a one-dimensional array of size n and type double, that holds the lower bounds xl on
the variables x. The j-th component of x_l, j = 0, ... , n-1, contains xlj .

in x_u is a one-dimensional array of size n and type double, that holds the upper bounds xl on
the variables x. The j-th component of x_u, j = 0, ... , n-1, contains xlj .

in,out x is a one-dimensional array of size n and type double, that holds the values x of the
optimization variables. The j-th component of x, j = 0, ... , n-1, contains xj .

out c is a one-dimensional array of size m and type double, that holds the residual c(x). The
i-th component of c, i = 0, ... , m-1, contains ci(x).

in,out y is a one-dimensional array of size n and type double, that holds the values y of the
Lagrange multipliers for the general linear constraints. The j-th component of y, i = 0, ... ,
m-1, contains yi.

in,out z is a one-dimensional array of size n and type double, that holds the values z of the dual
variables. The j-th component of z, j = 0, ... , n-1, contains zj .

out x_stat is a one-dimensional array of size n and type int, that gives the optimal status of the
problem variables. If x_stat(j) is negative, the variable xj most likely lies on its lower
bound, if it is positive, it lies on its upper bound, and if it is zero, it lies between its
bounds.

out c_stat is a one-dimensional array of size m and type int, that gives the optimal status of the
general linear constraints. If c_stat(i) is negative, the constraint value aTi x most likely
lies on its lower bound, if it is positive, it lies on its upper bound, and if it is zero, it lies
between its bounds.

Examples

cqpt.c, and cqptf.c.

3.1.2.7 cqp_information()

void cqp_information (

void ∗∗ data,

struct cqp_inform_type ∗ inform,

int ∗ status )

Provides output information

Parameters

in,out data holds private internal data

out inform is a struct containing output information (see cqp_inform_type)

out status is a scalar variable of type int, that gives the exit status from the package. Possible
values are (currently):

• 0. The values were recorded succesfully

C interfaces to GALAHAD CQP GALAHAD 4.0



22 File Documentation

Examples

cqpt.c, and cqptf.c.

3.1.2.8 cqp_terminate()

void cqp_terminate (

void ∗∗ data,

struct cqp_control_type ∗ control,

struct cqp_inform_type ∗ inform )

Deallocate all internal private storage

Parameters

in,out data holds private internal data

out control is a struct containing control information (see cqp_control_type)

out inform is a struct containing output information (see cqp_inform_type)

Examples

cqpt.c, and cqptf.c.

GALAHAD 4.0 C interfaces to GALAHAD CQP



Chapter 4

Example Documentation

4.1 cqpt.c

This is an example of how to use the package to solve a quadratic program. A variety of supported Hessian and
constraint matrix storage formats are shown.

Notice that C-style indexing is used, and that this is flaggeed by setting control.f_indexing to false.
/* cqpt.c */
/* Full test for the CQP C interface using C sparse matrix indexing */
#include <stdio.h>
#include <math.h>
#include "galahad_cqp.h"
int main(void) {

// Derived types
void *data;
struct cqp_control_type control;
struct cqp_inform_type inform;
// Set problem data
int n = 3; // dimension
int m = 2; // number of general constraints
int H_ne = 3; // Hesssian elements
int H_row[] = {0, 1, 2 }; // row indices, NB lower triangle
int H_col[] = {0, 1, 2}; // column indices, NB lower triangle
int H_ptr[] = {0, 1, 2, 3}; // row pointers
double H_val[] = {1.0, 1.0, 1.0 }; // values
double g[] = {0.0, 2.0, 0.0}; // linear term in the objective
double f = 1.0; // constant term in the objective
int A_ne = 4; // Jacobian elements
int A_row[] = {0, 0, 1, 1}; // row indices
int A_col[] = {0, 1, 1, 2}; // column indices
int A_ptr[] = {0, 2, 4}; // row pointers
double A_val[] = {2.0, 1.0, 1.0, 1.0 }; // values
double c_l[] = {1.0, 2.0}; // constraint lower bound
double c_u[] = {2.0, 2.0}; // constraint upper bound
double x_l[] = {-1.0, - INFINITY, - INFINITY}; // variable lower bound
double x_u[] = {1.0, INFINITY, 2.0}; // variable upper bound
// Set output storage
double c[m]; // constraint values
int x_stat[n]; // variable status
int c_stat[m]; // constraint status
char st;
int status;
printf(" C sparse matrix indexing\n\n");
printf(" basic tests of qp storage formats\n\n");
for( int d=1; d <= 7; d++){

// Initialize CQP
cqp_initialize( &data, &control, &status );
// Set user-defined control options
control.f_indexing = false; // C sparse matrix indexing
// Start from 0
double x[] = {0.0,0.0,0.0};
double y[] = {0.0,0.0};
double z[] = {0.0,0.0,0.0};
switch(d){



24 Example Documentation

case 1: // sparse co-ordinate storage
st = ’C’;
cqp_import( &control, &data, &status, n, m,

"coordinate", H_ne, H_row, H_col, NULL,
"coordinate", A_ne, A_row, A_col, NULL );

cqp_solve_qp( &data, &status, n, m, H_ne, H_val, g, f,
A_ne, A_val, c_l, c_u, x_l, x_u, x, c, y, z,
x_stat, c_stat );

break;
printf(" case %1i break\n",d);
case 2: // sparse by rows

st = ’R’;
cqp_import( &control, &data, &status, n, m,

"sparse_by_rows", H_ne, NULL, H_col, H_ptr,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr );

cqp_solve_qp( &data, &status, n, m, H_ne, H_val, g, f,
A_ne, A_val, c_l, c_u, x_l, x_u, x, c, y, z,
x_stat, c_stat );

break;
case 3: // dense

st = ’D’;
int H_dense_ne = 6; // number of elements of H
int A_dense_ne = 6; // number of elements of A
double H_dense[] = {1.0, 0.0, 1.0, 0.0, 0.0, 1.0};
double A_dense[] = {2.0, 1.0, 0.0, 0.0, 1.0, 1.0};
cqp_import( &control, &data, &status, n, m,

"dense", H_ne, NULL, NULL, NULL,
"dense", A_ne, NULL, NULL, NULL );

cqp_solve_qp( &data, &status, n, m, H_dense_ne, H_dense, g, f,
A_dense_ne, A_dense, c_l, c_u, x_l, x_u,
x, c, y, z, x_stat, c_stat );

break;
case 4: // diagonal

st = ’L’;
cqp_import( &control, &data, &status, n, m,

"diagonal", H_ne, NULL, NULL, NULL,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr );

cqp_solve_qp( &data, &status, n, m, H_ne, H_val, g, f,
A_ne, A_val, c_l, c_u, x_l, x_u, x, c, y, z,
x_stat, c_stat );

break;
case 5: // scaled identity

st = ’S’;
cqp_import( &control, &data, &status, n, m,

"scaled_identity", H_ne, NULL, NULL, NULL,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr );

cqp_solve_qp( &data, &status, n, m, H_ne, H_val, g, f,
A_ne, A_val, c_l, c_u, x_l, x_u, x, c, y, z,
x_stat, c_stat );

break;
case 6: // identity

st = ’I’;
cqp_import( &control, &data, &status, n, m,

"identity", H_ne, NULL, NULL, NULL,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr );

cqp_solve_qp( &data, &status, n, m, H_ne, H_val, g, f,
A_ne, A_val, c_l, c_u, x_l, x_u, x, c, y, z,
x_stat, c_stat );

break;
case 7: // zero

st = ’Z’;
cqp_import( &control, &data, &status, n, m,

"zero", H_ne, NULL, NULL, NULL,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr );

cqp_solve_qp( &data, &status, n, m, H_ne, H_val, g, f,
A_ne, A_val, c_l, c_u, x_l, x_u, x, c, y, z,
x_stat, c_stat );

break;
}

cqp_information( &data, &inform, &status );
if(inform.status == 0){

printf("%c:%6i iterations. Optimal objective value = %5.2f status = %1i\n",
st, inform.iter, inform.obj, inform.status);

}else{
printf("%c: CQP_solve exit status = %1i\n", st, inform.status);

}
//printf("x: ");
//for( int i = 0; i < n; i++) printf("%f ", x[i]);
//printf("\n");
//printf("gradient: ");
//for( int i = 0; i < n; i++) printf("%f ", g[i]);
//printf("\n");
// Delete internal workspace
cqp_terminate( &data, &control, &inform );

}
// test shifted least-distance interface
for( int d=1; d <= 1; d++){

GALAHAD 4.0 C interfaces to GALAHAD CQP



4.2 cqptf.c 25

// Initialize CQP
cqp_initialize( &data, &control, &status );
// Set user-defined control options
control.f_indexing = false; // C sparse matrix indexing
// Start from 0
double x[] = {0.0,0.0,0.0};
double y[] = {0.0,0.0};
double z[] = {0.0,0.0,0.0};
// Set shifted least-distance data
double w[] = {1.0,1.0,1.0};
double x_0[] = {0.0,0.0,0.0};
switch(d){

case 1: // sparse co-ordinate storage
st = ’W’;
cqp_import( &control, &data, &status, n, m,

"shifted_least_distance", H_ne, NULL, NULL, NULL,
"coordinate", A_ne, A_row, A_col, NULL );

cqp_solve_sldqp( &data, &status, n, m, w, x_0, g, f,
A_ne, A_val, c_l, c_u, x_l, x_u, x, c, y, z,
x_stat, c_stat );

break;
}

cqp_information( &data, &inform, &status );
if(inform.status == 0){

printf("%c:%6i iterations. Optimal objective value = %5.2f status = %1i\n",
st, inform.iter, inform.obj, inform.status);

}else{
printf("%c: CQP_solve exit status = %1i\n", st, inform.status);

}
//printf("x: ");
//for( int i = 0; i < n; i++) printf("%f ", x[i]);
//printf("\n");
//printf("gradient: ");
//for( int i = 0; i < n; i++) printf("%f ", g[i]);
//printf("\n");
// Delete internal workspace
cqp_terminate( &data, &control, &inform );

}
}

4.2 cqptf.c

This is the same example, but now fortran-style indexing is used.

/* cqptf.c */
/* Full test for the CQP C interface using Fortran sparse matrix indexing */
#include <stdio.h>
#include <math.h>
#include "galahad_cqp.h"
int main(void) {

// Derived types
void *data;
struct cqp_control_type control;
struct cqp_inform_type inform;
// Set problem data
int n = 3; // dimension
int m = 2; // number of general constraints
int H_ne = 3; // Hesssian elements
int H_row[] = {1, 2, 3 }; // row indices, NB lower triangle
int H_col[] = {1, 2, 3}; // column indices, NB lower triangle
int H_ptr[] = {1, 2, 3, 4}; // row pointers
double H_val[] = {1.0, 1.0, 1.0 }; // values
double g[] = {0.0, 2.0, 0.0}; // linear term in the objective
double f = 1.0; // constant term in the objective
int A_ne = 4; // Jacobian elements
int A_row[] = {1, 1, 2, 2}; // row indices
int A_col[] = {1, 2, 2, 3}; // column indices
int A_ptr[] = {1, 3, 5}; // row pointers
double A_val[] = {2.0, 1.0, 1.0, 1.0 }; // values
double c_l[] = {1.0, 2.0}; // constraint lower bound
double c_u[] = {2.0, 2.0}; // constraint upper bound
double x_l[] = {-1.0, - INFINITY, - INFINITY}; // variable lower bound
double x_u[] = {1.0, INFINITY, 2.0}; // variable upper bound
// Set output storage
double c[m]; // constraint values
int x_stat[n]; // variable status
int c_stat[m]; // constraint status
char st;
int status;
printf(" Fortran sparse matrix indexing\n\n");
printf(" basic tests of qp storage formats\n\n");

C interfaces to GALAHAD CQP GALAHAD 4.0



26 Example Documentation

for( int d=1; d <= 7; d++){
// Initialize CQP
cqp_initialize( &data, &control, &status );
// Set user-defined control options
control.f_indexing = true; // Fortran sparse matrix indexing
// Start from 0
double x[] = {0.0,0.0,0.0};
double y[] = {0.0,0.0};
double z[] = {0.0,0.0,0.0};
switch(d){

case 1: // sparse co-ordinate storage
st = ’C’;
cqp_import( &control, &data, &status, n, m,

"coordinate", H_ne, H_row, H_col, NULL,
"coordinate", A_ne, A_row, A_col, NULL );

cqp_solve_qp( &data, &status, n, m, H_ne, H_val, g, f,
A_ne, A_val, c_l, c_u, x_l, x_u, x, c, y, z,
x_stat, c_stat );

break;
printf(" case %1i break\n",d);
case 2: // sparse by rows

st = ’R’;
cqp_import( &control, &data, &status, n, m,

"sparse_by_rows", H_ne, NULL, H_col, H_ptr,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr );

cqp_solve_qp( &data, &status, n, m, H_ne, H_val, g, f,
A_ne, A_val, c_l, c_u, x_l, x_u, x, c, y, z,
x_stat, c_stat );

break;
case 3: // dense

st = ’D’;
int H_dense_ne = 6; // number of elements of H
int A_dense_ne = 6; // number of elements of A
double H_dense[] = {1.0, 0.0, 1.0, 0.0, 0.0, 1.0};
double A_dense[] = {2.0, 1.0, 0.0, 0.0, 1.0, 1.0};
cqp_import( &control, &data, &status, n, m,

"dense", H_ne, NULL, NULL, NULL,
"dense", A_ne, NULL, NULL, NULL );

cqp_solve_qp( &data, &status, n, m, H_dense_ne, H_dense, g, f,
A_dense_ne, A_dense, c_l, c_u, x_l, x_u,
x, c, y, z, x_stat, c_stat );

break;
case 4: // diagonal

st = ’L’;
cqp_import( &control, &data, &status, n, m,

"diagonal", H_ne, NULL, NULL, NULL,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr );

cqp_solve_qp( &data, &status, n, m, H_ne, H_val, g, f,
A_ne, A_val, c_l, c_u, x_l, x_u, x, c, y, z,
x_stat, c_stat );

break;
case 5: // scaled identity

st = ’S’;
cqp_import( &control, &data, &status, n, m,

"scaled_identity", H_ne, NULL, NULL, NULL,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr );

cqp_solve_qp( &data, &status, n, m, H_ne, H_val, g, f,
A_ne, A_val, c_l, c_u, x_l, x_u, x, c, y, z,
x_stat, c_stat );

break;
case 6: // identity

st = ’I’;
cqp_import( &control, &data, &status, n, m,

"identity", H_ne, NULL, NULL, NULL,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr );

cqp_solve_qp( &data, &status, n, m, H_ne, H_val, g, f,
A_ne, A_val, c_l, c_u, x_l, x_u, x, c, y, z,
x_stat, c_stat );

break;
case 7: // zero

st = ’Z’;
cqp_import( &control, &data, &status, n, m,

"zero", H_ne, NULL, NULL, NULL,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr );

cqp_solve_qp( &data, &status, n, m, H_ne, H_val, g, f,
A_ne, A_val, c_l, c_u, x_l, x_u, x, c, y, z,
x_stat, c_stat );

break;
}

cqp_information( &data, &inform, &status );
if(inform.status == 0){

printf("%c:%6i iterations. Optimal objective value = %5.2f status = %1i\n",
st, inform.iter, inform.obj, inform.status);

}else{
printf("%c: CQP_solve exit status = %1i\n", st, inform.status);

}
//printf("x: ");

GALAHAD 4.0 C interfaces to GALAHAD CQP



4.2 cqptf.c 27

//for( int i = 0; i < n; i++) printf("%f ", x[i]);
//printf("\n");
//printf("gradient: ");
//for( int i = 0; i < n; i++) printf("%f ", g[i]);
//printf("\n");
// Delete internal workspace
cqp_terminate( &data, &control, &inform );

}
// test shifted least-distance interface
for( int d=1; d <= 1; d++){

// Initialize CQP
cqp_initialize( &data, &control, &status );
// Set user-defined control options
control.f_indexing = true; // Fortran sparse matrix indexing
// Start from 0
double x[] = {0.0,0.0,0.0};
double y[] = {0.0,0.0};
double z[] = {0.0,0.0,0.0};
// Set shifted least-distance data
double w[] = {1.0,1.0,1.0};
double x_0[] = {0.0,0.0,0.0};
switch(d){

case 1: // sparse co-ordinate storage
st = ’W’;
cqp_import( &control, &data, &status, n, m,

"shifted_least_distance", H_ne, NULL, NULL, NULL,
"coordinate", A_ne, A_row, A_col, NULL );

cqp_solve_sldqp( &data, &status, n, m, w, x_0, g, f,
A_ne, A_val, c_l, c_u, x_l, x_u, x, c, y, z,
x_stat, c_stat );

break;
}

cqp_information( &data, &inform, &status );
if(inform.status == 0){

printf("%c:%6i iterations. Optimal objective value = %5.2f status = %1i\n",
st, inform.iter, inform.obj, inform.status);

}else{
printf("%c: CQP_solve exit status = %1i\n", st, inform.status);

}
//printf("x: ");
//for( int i = 0; i < n; i++) printf("%f ", x[i]);
//printf("\n");
//printf("gradient: ");
//for( int i = 0; i < n; i++) printf("%f ", g[i]);
//printf("\n");
// Delete internal workspace
cqp_terminate( &data, &control, &inform );

}
}

C interfaces to GALAHAD CQP GALAHAD 4.0



28 Example Documentation

GALAHAD 4.0 C interfaces to GALAHAD CQP



Index

cqp_control_type, 8
cqp_import

galahad_cqp.h, 14
cqp_inform_type, 12
cqp_information

galahad_cqp.h, 21
cqp_initialize

galahad_cqp.h, 13
cqp_read_specfile

galahad_cqp.h, 13
cqp_reset_control

galahad_cqp.h, 16
cqp_solve_qp

galahad_cqp.h, 16
cqp_solve_sldqp

galahad_cqp.h, 18
cqp_terminate

galahad_cqp.h, 22
cqp_time_type, 11

galahad_cqp.h, 7
cqp_import, 14
cqp_information, 21
cqp_initialize, 13
cqp_read_specfile, 13
cqp_reset_control, 16
cqp_solve_qp, 16
cqp_solve_sldqp, 18
cqp_terminate, 22


	1 GALAHAD C package cqp
	1.1 Introduction
	1.1.1 Purpose
	1.1.2 Authors
	1.1.3 Originally released
	1.1.4 Terminology
	1.1.5 Method
	1.1.6 Reference
	1.1.7 Call order
	1.1.8 Unsymmetric matrix storage formats
	1.1.8.1 Dense storage format
	1.1.8.2 Sparse co-ordinate storage format
	1.1.8.3 Sparse row-wise storage format

	1.1.9 Symmetric matrix storage formats
	1.1.9.1 Dense storage format
	1.1.9.2 Sparse co-ordinate storage format
	1.1.9.3 Sparse row-wise storage format
	1.1.9.4 Diagonal storage format
	1.1.9.5 Multiples of the identity storage format
	1.1.9.6 The identity matrix format
	1.1.9.7 The zero matrix format



	2 File Index
	2.1 File List

	3 File Documentation
	3.1 galahad_cqp.h File Reference
	3.1.1 Data Structure Documentation
	3.1.1.1 struct cqp_control_type
	3.1.1.2 struct cqp_time_type
	3.1.1.3 struct cqp_inform_type

	3.1.2 Function Documentation
	3.1.2.1 cqp_initialize()
	3.1.2.2 cqp_read_specfile()
	3.1.2.3 cqp_import()
	3.1.2.4 cqp_reset_control()
	3.1.2.5 cqp_solve_qp()
	3.1.2.6 cqp_solve_sldqp()
	3.1.2.7 cqp_information()
	3.1.2.8 cqp_terminate()



	4 Example Documentation
	4.1 cqpt.c
	4.2 cqptf.c

	Index

